Speaker
Description
Two-particle correlation functions provide critical information about the medium quark--gluon plasma (QGP) created in heavy-ion collisions. Recent ALICE measurements have demonstrated large dynamical correlations between produced neutral and charged kaons in Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 2.76 $ TeV~\cite{ALICE:2021fpb}. These integrated correlations cannot be described by conventional heavy-ion models, such as EPOS and AMPT. So far, the ALICE measurements can only be described by invoking the presence of condensates ~\cite{Kapusta:2022ovq}. A candidate for such a condensate is the Disoriented Chiral Condensate (DCC)~\cite{Mohanty:2005mv}. DCC arises from chiral symmetry restoration in the QGP, which breaks during the phase transition to form a condensate which coherently emits hadrons. Therefore, the discovery of DCC would indicate that chiral symmetry is restored in the QGP, a major prediction of QGP formation that has yet to be confirmed experimentally.
To investigate these anomalous kaon correlations further, a differential analysis of two-particle angular correlation functions of charged and neutral kaons as a function of $\Delta \varphi$ and $\Delta \eta$ in Pb--Pb collisions at $\sqrt{s_{\rm{NN}}} = 5.02 $ TeV is intended. The variables, $\varphi$ and $\eta$ are azimuthal angle and pseudorapidity respectively. The results from a simulation study using HIJING model, as a guide to the future exploration using heavy in data will be presented.
Category | Experiment |
---|---|
Collaboration (if applicable) | ALICE |