Speaker
Description
In this contribution, we extend the scope of the JETSCAPE framework to cover the jet radius ($R$) dependence of the jet nuclear modification factor, ${R_{AA}}$, for broader area jet cones, going all the way up to $R$ = 1.0. The primary focus of this work has been the in-depth analysis of the high-${p_{T}}$ inclusive jets and the quenching effects observed in the quark-gluon plasma formed in the Pb-Pb collisions at ${\sqrt{\rm s_{NN}}}$= 5.02 TeV for the most-central (0-10%) collisions. The nuclear modification factor is calculated for inclusive jets to compare with the experimental data from the ATLAS and CMS detectors in the jet transverse momentum (${p_{T}}$) ranging from 100 GeV up to 1 TeV. The results predicted by the JETSCAPE are consistent in the high ${p_{T}}$ range as well as for extreme jet cone sizes within 10-20\%. We also calculate the double ratio (${R^{\mathrm{R}}_{\mathrm{AA}}/R^{\mathrm{R=small}}_{\mathrm{AA}}}$) as a function of jet radius and jet-${p_{T}}$, where the observations are well described by the JETSCAPE framework which is based on the hydrodynamic multi-stage evolution of the parton shower. The calculations are then performed for low-virtuality-based evolution models like the MARTINI and the AdS/CFT, followed by a rigorous comparison between the former model's predictions and the CMS experiment's measurements.
Category | Theory |
---|---|
Collaboration (if applicable) | Past member of ATLAS and ALICE collaborations |