3–9 Sept 2023
Hilton of the Americas, 1600 Lamar, Houston, Texas, 77010, USA
US/Central timezone

A modular perspective to the jet quenching from a small to large radius in very high transverse momentum jets

5 Sept 2023, 17:30
2h 10m
Grand Ballroom, 4th floor ( Hilton of the Americas)

Grand Ballroom, 4th floor

Hilton of the Americas

Poster Jets Poster Session

Speaker

Prabhakar Palni (IIT Mandi)

Description

In this contribution, we extend the scope of the JETSCAPE framework to cover the jet radius ($R$) dependence of the jet nuclear modification factor, ${R_{AA}}$, for broader area jet cones, going all the way up to $R$ = 1.0. The primary focus of this work has been the in-depth analysis of the high-${p_{T}}$ inclusive jets and the quenching effects observed in the quark-gluon plasma formed in the Pb-Pb collisions at ${\sqrt{\rm s_{NN}}}$= 5.02 TeV for the most-central (0-10%) collisions. The nuclear modification factor is calculated for inclusive jets to compare with the experimental data from the ATLAS and CMS detectors in the jet transverse momentum (${p_{T}}$) ranging from 100 GeV up to 1 TeV. The results predicted by the JETSCAPE are consistent in the high ${p_{T}}$ range as well as for extreme jet cone sizes within 10-20\%. We also calculate the double ratio (${R^{\mathrm{R}}_{\mathrm{AA}}/R^{\mathrm{R=small}}_{\mathrm{AA}}}$) as a function of jet radius and jet-${p_{T}}$, where the observations are well described by the JETSCAPE framework which is based on the hydrodynamic multi-stage evolution of the parton shower. The calculations are then performed for low-virtuality-based evolution models like the MARTINI and the AdS/CFT, followed by a rigorous comparison between the former model's predictions and the CMS experiment's measurements.

Category Theory
Collaboration (if applicable) Past member of ATLAS and ALICE collaborations

Primary author

Prabhakar Palni (IIT Mandi)

Co-authors

Om Shahi (BITS PILANI K K BIRLA GOA CAMPUS) Vaishnavi Desai (Goa University)

Presentation materials

There are no materials yet.