Speaker
Description
In this work we carry out a systematic texture study of the neutrino mass matrix with the ansatzes - (i) one vanishing minor and (ii) the zero sum of the mass eigenvalues with the CP phases (henceforth vanishing trace). There are six possible textures of a neutrino mass matrix with one vanishing minor. The viability of each texture is checked with $3\sigma$ values of current neutrino data by drawing scatter plots. In our analysis we are motivated to use the ratio of solar to atmospheric mass-squared differences $R_{\nu}$ for its precise measurement (and also the atmospheric mixing angle $\theta_{23}$) to constrain phenomenologically first the Dirac CP phase $\delta$ in the range of $(0^o-360^o)$ for a given texture with the solutions of the constraint equations. Subsequently we employ this constrained $\delta$ to determine the range of completely unknown Majorana CP Phases ($\alpha$ and $\beta$) for all the viable textures. We also check the neutrinoless double beta decay rate, $|m_{ee}|$ and the Jarlskog invariant, $J_{cp}$ for the textures. Finally the symmetry realization of all the viable textures under the flavor symmetry group $Z_5$ via seesaw mechanism is implemented along with the FN mechanism to determine mass hierarchy structure.