The Belle and Belle$~$II experiments have collected a $1.4~\mathrm{ab}^{-1}$ sample of $e^+e^-$ collision data at centre-of-mass energies near the $\Upsilon(nS)$ resonances. These samples contain a large number of $e^+e^-\to c\bar{c}$ events that produce charmed mesons. Direct $C\!P$ violation is searched for in $D^0\to K^0_{\rm S}K^0_{\rm S}$ decays and $D$-meson decays to a four-body final...
Charm measurements allow for testing the Standard Model in a way complementary to measurements in b-quark sector. LHCb experiment, with its large data sample and excellent performance, provides sensitivity approaching the Standard Model predictions for rare charm decays. In this talk, recent LHCb results on rare decays of charm hadrons will be presented.
Studies of exotic hadrons comprise a natural and privileged playground for a more thorough elucidation of the nature of quantum chromodynamics. In this contest the LHCb experiment, dedicated to study heavy flavor hadrons produced from pp collision at the LHC, plays a vital role, already providing evidence for several exotic hadrons. The talk will deliver an overview of the selected, latest...
In our work, we have used modular invariance approach to construct a neutrino mass model in the framework of the inverse seesaw(2,3) mechanism with modular S4 flavor symmetry. The use of modular invariance requires less number of flavon fields which increases the predictability of the model. The phenomenological study of the neutrino mass matrix is carried out using the current 3σ ranges of...
We explore the connection between low-scale CP-violating Dirac phase $(\delta)$ and high-scale leptogenesis in a Left-Right Symmetric Model (LRSM) with scalar bidoublet and doublets. The fermion sector of the model is extended with one sterile neutrino $(S_L)$ per generation to implement a double seesaw mechanism in the neutral fermion mass matrix. The double seesaw is performed via the...
The Belle and Belle$~$II experiments have collected a 1.1$~$ab$^{-1}$ sample of $e^+ e^-\to B\bar{B}$ collisions at the $\Upsilon(4S)$ resonance. These data, with low particle multiplicity and constrained initial state kinematics, are an ideal environment to search for rare $B$ meson decays proceeding via electroweak and radiative penguin processes. Results include those of the decay $B^+\to...
Recent results on CP violation in charm and beauty sector, as well as lifetime measurements, by the CMS experiment at the LHC are presented. The analyses are based on 13 TeV pp collision data.
Inspired by the recent BESIII measurement of the decay asymmetry in the decay $\Lambda_c^+\to \Xi^0K^+$, we perform a global fit to the experimental data of two-body charmed baryon decays based on the topological diagrammatic approach (TDA) which has the advantage that it is more intuitive, graphic and easier to implement model calculations. The measured branching fractions and decay...
Observations of flavor anomalies in the $b$-sector, particularly the deviations in the measurements of the lepton flavor universality ratios in the $b \rightarrow c \tau \nu_\tau$ transitions from the standard model (SM) predictions, suggest the existence of possible new physics beyond the SM. In the pursuit of new physics in similar decays involving $b\to c \ell \nu_{\ell}$ transitions, we...
In this work we carry out a systematic texture study of the neutrino mass matrix with the ansatzes - (i) one vanishing minor and (ii) the zero sum of the mass eigenvalues with the CP phases (henceforth vanishing trace). There are six possible textures of a neutrino mass matrix with one vanishing minor. The viability of each texture is checked with $3\sigma$ values of current neutrino data by...
Results of a global data analysis can constrain the default 3-neutrino mixing scheme given unitarity assumption, based on recent data from the reactor, solar and long-baseline accelerator neutrino oscillation experiments. It is straightforward to extend the analysis towards the non-unitary assumption. Meanwhile, global neutrino data scrutiny serves as a probe of new physics such as whether...
The KM3NeT research infrastructure is building second-generation neutrino telescopes in the depths of the Mediterranean Sea. The KM3NeT/ARCA detector at a depth of 3500 m off the coast of Sicily, Italy, focuses on the detection of high energy (E>TeV) neutrinos from astrophysical sources. The KM3NeT/ORCA detector at a depth of 2500 m off the coast of Toulon, France, is aimed at studying low...
Nearly 70 years since the neutrino was discovered, and 25 years since discovery of neutrino oscillations established its non-zero mass, the absolute neutrino-mass scale remains unknown. Due to its unique characteristics, determining this neutrino property requires new measurement techniques to be developed. Currently, there are four measurement approaches: using cosmological models, inference...
CMS speaker
Recent CMS results on rare decays are presented. The results are based on data collected in proton-proton collisions at sqrt(s) = 13 TeV.
In the Standard Model, decays mediated by $b\rightarrow sll$ are very suppressed making them sensitive to possible non-SM contributions.
The latest LHCb measurement of the branching fraction ratio of this process between electrons and muons was shown to be consistent with the Standard Model.
However, measurements of branching fraction and angular observables of $b\rightarrow s\mu \mu$ have...
Overview and recent results on spectroscopy of exotic hadrons in ATLAS with Run-2 data are presented. Four-muon mass spectrum is studied, investigating the structures earlier observed by LHCb experiment in di-$J/\psi$ channel, using di-$J/\psi$ and $J/\psi+\psi(2S)$ final states. Search for exotic resonances is also performed in $\Upsilon(1S)+2\mu$ final state. ATLAS measurement of...
Topic: FPCP IAC Meeting
Time: May 28, 2024 12:30 PM Bangkok
Join Zoom Meeting
https://cern.zoom.us/j/65325537999?pwd=LzdXakNXRmphdkJuUVVETlpCbythZz09
Meeting ID: 653 2553 7999
Passcode: 544134
We have considered a simplified dark matter model featuring a spin-0 mediator that contributes to Flavor Changing Charge Current (FCCC) and Neutral Current (FCNC) processes, as well as electroweak observables at the one-loop level. Through a combined fit incorporating all flavor observables of FCNC, FCCC, and EW observables, we constrain the parameter space. This model adequately describes...
Recent results on open heavy flavour and charmonium production from ATLAS experiment with Run-2 data are presented. This covers the double differential measurements of J/ψ and ψ(2S) production, D mesons and B+ production at √s=13 TeV
We explore $U(1)_{L_e-L_\mu}$ gauge extension of the Standard model with particle content enlarged by three neutral fermions, of which the lightest one contributes to dark matter content of the Universe. The scalar sector is enriched with a $\tilde{R}_2$ scalar leptoquark doublet to investigate flavor anomalies in $B$-meson sector, an additional inert scalar doublet to realize neutrino mass at...
The upcoming long baseline neutrino experiments aim to enhance proton beam power to multi-MW scale and utilize large-scale detectors to address the challenge of limited event statistics. The DUNE experiment at LBNF will test the three neutrino flavor paradigm and directly search for CP violation by studying oscillation signatures in the high intensity $\nu_{\mu}$ (anti-$\nu_{\mu}$) beam to...
Various precision measurements with B mesons from ATLAS are presented. They include studies of CP violation in $B^0_s\to J/\psi\phi$ decay, $B_c^+$ meson decay properties and measurement of B0 meson lifetime, along with average decay width $\Gamma_d$ and $\Gamma_d/\Gamma_s$ ratio.
The nature of neutrinos, whether Dirac or Majorana, is hitherto not known. Assuming that the neutrinos are Dirac, which needs $B-L$ to be an exact symmetry, we attempt to explain the observed proportionality between the relic densities of dark matter (DM) and baryonic matter in the present Universe ${\it i.e.,}\,\, \Omega_{\rm DM} \approx 5\, \Omega_{\rm B}$. We extend the Standard Model (SM)...
Lepton Flavor Universality (LFU) is a fundamental principle in the Standard Model (SM) of particle physics, stating that the interactions of different generations of leptons with the weak force should be identical. However, experimental observations in the last decade have hinted at potential violations of LFU by comparing the ratios of branching fractions of semileptonic $b \to c \ell \nu$...
The Belle and Belle$~$II experiments have collected a 1.1$~$ab$^{-1}$ sample of $e^+ e^-\to B\bar{B}$ collisions at the $\Upsilon(4S)$ resonance. These data, with low particle multiplicity, constrained initial state kinematics and excellent lepton identification, are an ideal environment to study lepton-flavour universality in semileptonic decays of the $B$ meson. We present results on the...
In this work, we study the impact of the environmental decoherence at Protvino to ORCA (P2O) experiment which has a substantial baseline of 2595 kilometres. We simulate this experiment assuming different phenomenological models and by considering energy dependency of decoherence parameter, $\Gamma \propto E_{\nu}^n$ ( $n = 0, \pm 1, \pm 2$). We estimate the sensitivity of P2O experiment to...
We perform a model-independent study of $c \to s \mu \nu$ mediated transitions to analyze the new physics effects in the presence of right-handed neutrinos. We have adopted the effective field theory approach and write the low-energy effective Hamiltonian including all possible dimension-six operators. The Wilson coefficients introduced through low energy effective Hamiltonian encode all NP...
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino experiment currently under construction in the US. The experiment consists of a broadband neutrino beam from Fermilab to the Sanford Underground Research Facility (SURF) in Lead, South Dakota, a high-precision near detector, and a large liquid argon time-projection chamber (LArTPC) far detector. Two...
Inspired by the various LHCb results of lepton flavour violation on b→s transition we will study the lepton flavour violating b→l1l2 decays in terms of transversity amplitudes in non-universal Z’ model. These LFV
processes are extremely suppressed in the Standard Model (SM) because the expected levels at the SM lie far below current experimental sensitivities. In particular the branching...
Motivated by the interplay between the LEFT and SMEFT operators at the electroweak scale, we study the interrelation among the transitions $b \to c \ell \nu_{\ell}$, $b \to s \nu _\ell \nu _\ell$ and $b \to s\ell \ell$ ($\ell = e, \mu, \tau$). We explore this correlation within the context of six - SMEFT operators: $\mathcal{Q}_{\ell q}^{(3)}$, $\mathcal{Q}_{\ell ed q}$, $\mathcal{Q}_{\ell e...
The Deep Underground Neutrino Experiment (DUNE) is the next generation neutrino experiment currently under construction. It consists of a broadband neutrino beam at Fermilab, a high precision near detector, and the largest liquid argon time projection chamber far detector ever designed at the Sanford Underground Research Facility (SURF).
The Region of Interest (ROI) filter is designed for...
Charm decays have immense potential to probe physics beyond the standard model [1, 2]. The charm sector has shown some interesting phenomena, for instance, $D^0-\bar{D^0}$ mixing and CP violation [3, 4]. The experimental upper bounds for the branching fractions are constrained at $7.9×10^{-8}$ for $D^0→e^+ e^-$[5] and $6.2×10^{-9}$ for $D^0→μ^+ μ^-$[6]. Recent results from the LHCb have...
T2K and NOvA experiments are the two long-baseline experiments currently collecting data to study neutrino oscillations, a quantum mechanical interference phenomenon where the observed neutrino flavor differs from that measured earlier, stemming from neutrino mass and flavor states mixing. The T2K experiment is based in Japan with a peak neutrino energy of ~0.6GeV and a baseline length of...
Hyper-Kamiokande, the next-generation neutrino observatory in Japan, evolves from its predecessors, Kamiokande and Super-Kamiokande, with a significant upgrade to a 260-kton water Cherenkov detector equipped with 20,000 PMTs. Hyper-Kamiokande will host an extremely rich and broad physics program, covering areas from neutrino astrophysics to nucleon decay searches and precision neutrino...
Studies of CP-parity violation (CPV) in heavy flavours allow measurements of important theory parameters and searches for effects deviating from the Standard Model predictions. The talk features new results of CPV studies at the LHC. Following the observation of CPV in a charm decay by the LHCb experiment, new studies of CPV in charm decays are reported. In B sector, new measurements of the...
The LHCb experiment was designed to measure CP-violation in the b-sector and to study rare decays of b- and c-hadrons at the LHC. The excellent performance of the detector during Run 1 and 2 of the LHC enabled LHCb to produce many interesting results. However, the maximum data rate was limited to by a Level-0 hardware trigger to 1.1 MHz and the trigger yield saturated at higher luminosities...
The NA62 experiment at CERN, designed to measure the highly-suppressed decay $K^{+} \rightarrow \pi^{+}\nu\bar{\nu}$, has the capability to collect data in a beam-dump mode, where 400~GeV protons are dumped on an absorber. In this configuration, New Physics (NP) particles, including dark photons, dark scalars and axion-like particles, may be produced and reach a decay volume beginning 80~m...
SND@LHC is a compact and stand-alone experiment to perform measurements with neutrinos produced at the LHC in a hitherto unexplored pseudo-rapidity region of 7.2 < 𝜂 < 8.6, complementary to all the other experiments at the LHC. The experiment is located 480 m downstream of IP1 in the unused TI18 tunnel. The detector is composed of a hybrid system based on an 800 kg target mass of tungsten...
The ESSnuSB project aims to measure the leptonic CP violation at the second neutrino oscillation maximum using an intense neutrino beam produced by the powerful ESS proton linear accelerator in Sweden. This next-to-next generation long baseline neutrino oscillation experiment has a potential to start the precision era in the field of the leptonic CP violation measurement. Indeed, the reduced...
The speaker will discuss the new structures reported by the CMS collaboration recently. Three structures are found in the J/ψJ/ψ mass spectrum in proton-proton collisions at 13 TeV, and a model with quantum interference among these structures provides a good description of the data. Among them, a new structure with mass around 6.6 GeV is observed with a local significance > 5 sigma. Another...
Recent measurements in flavour changing charged current (FCCC) $b→c\bar l \nu_l$ transitions hint existence of new physics (NP) beyond the standard model (SM). The lepton flavour universality (LFU) ratios $R_{D^{(*)}}$ measured by BaBar, Belle and LHCb have shown around $3.3\sigma$ deviation between theory and experiment [1]. These anomalous results connected to the $b$ hadron decays indicate...
The first observation of the concurrent production of two $\rm{J}/\psi$ mesons in proton-nucleus collisions will be presented. The analysis is based on a data sample recorded at a nucleon-nucleon center-of-mass energy of 8.16 TeV by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 174.6 $\rm{nb}^{-1}$. The $\rm{J}/\psi$ mesons are reconstructed in their...
Radiative b-hadron decays are sensitive probes to new physics through the study of branching fractions, angular observables, CP violation parameters, and photon polarization. The LHCb experiment is ideally suited for the analysis of these decays due to the high luminosity of B production, its high trigger efficiency, as well as excellent tracking and particle identification performance. Recent...
The Belle and Belle$~$II experiment have collected samples of $e^+e^-$ collision data at centre-of-mass energies near the $\Upsilon(nS)$ resonances. These data have constrained kinematics and low multiplicity, which allow searches for dark sector particles in the mass range from a few MeV to 10$~$GeV. Latest results are presented.
We study the exclusive semileptonic $B_c\to D_s^{(*)} (\mu^+ \mu^-, \nu \bar{\nu})$ decay modes mediated by $b \to s$ quark level transitions in the Effective field theory formalism. There are discrepancies between the experimental measurements and the Standard Model predictions in various observables associated with the $B \to (K, K^*, \phi)\ell \ell$ processes. On the other hand, a very...
Recent CMS Experiment results on conventional spectroscopy and production of heavy flavour states in pp collisions at 13 TeV are reported, including the first observation of the Xi_b- —> psi(2S) Xi- decay. We discuss the measured properties of the ground and excited hadron states.
The Super Tau Charm Facility (STCF), a planned symmetric electron-positron collider in China, aims to facilitate $e^+e^−$ collisions across a center-of-mass energy range of 2 to 7 GeV, targeting a peak luminosity of $0.5×10^{35}\mathrm{cm}^{−2}\mathrm{s}^{−1}$. With an anticipated annual integrated luminosity exceeding $1~ab^{−1}$, the STCF is poised to generate vast datasets. These will...
In the naive quark model, baryons and mesons are bound states of three quarks and quark-antiquark pair, respectively. However, Exotic hadrons such as tetraquark ($q^2{\overline q}^2$), pentaquark ($q^4{\overline q}$), hexaquark ($q^3{\overline q}^3$), and even quark-gluon hydrid ($q^3G$) and glueball are not forbidden in the framework of QCD. Some exotic hadron states may possess quantum...
After more than 60 years since the first measurements, the study of $e^+e^-$ annihilation processes at low energies are still
a great source of information in an energy region where perturbative Quantum Chromodinamyc cannot be used.
The hadronic cross section is also the experimental input for the theoretical
calculation of the hadronic contribution to the anomalous magnetic moment of...
The P in FPCP has a long and interesting history. Here, I argue that P does not stand for Patipan
ATLAS measurement of B0s → μ+ μ- effective lifetime with 2015-2016 data is presented. This observable, along with the branching fraction of the decay, is sensitive to New physics contributions to the decay amplitude. The measurement result is consistent with the SM.
Recent results on spectroscopy of exotic hadrons in ATLAS with Run-2 data are presented. Four-muon mass spectrum is studied investigating the structures earlier observed by LHCb experiment, using di-J/ψ and J/ψ+ψ(2S) channels. The latter is also investigated using ψ(2S)→ J/ψ(μ+μ−)π+π− decay mode.