### Conveners

#### Parallel - 5

- NAPAT POOVUTTIKUL

We have considered a simplified dark matter model featuring a spin-0 mediator that contributes to Flavor Changing Charge Current (FCCC) and Neutral Current (FCNC) processes, as well as electroweak observables at the one-loop level. Through a combined fit incorporating all flavor observables of FCNC, FCCC, and EW observables, we constrain the parameter space. This model adequately describes...

We explore $U(1)_{L_e-L_\mu}$ gauge extension of the Standard model with particle content enlarged by three neutral fermions, of which the lightest one contributes to dark matter content of the Universe. The scalar sector is enriched with a $\tilde{R}_2$ scalar leptoquark doublet to investigate flavor anomalies in $B$-meson sector, an additional inert scalar doublet to realize neutrino mass at...

The nature of neutrinos, whether Dirac or Majorana, is hitherto not known. Assuming that the neutrinos are Dirac, which needs $B-L$ to be an exact symmetry, we attempt to explain the observed proportionality between the relic densities of dark matter (DM) and baryonic matter in the present Universe ${\it i.e.,}\,\, \Omega_{\rm DM} \approx 5\, \Omega_{\rm B}$. We extend the Standard Model (SM)...

We perform a model-independent study of $c \to s \mu \nu$ mediated transitions to analyze the new physics effects in the presence of right-handed neutrinos. We have adopted the effective field theory approach and write the low-energy effective Hamiltonian including all possible dimension-six operators. The Wilson coefficients introduced through low energy effective Hamiltonian encode all NP...

Inspired by the various LHCb results of lepton flavour violation on b→s transition we will study the lepton flavour violating b→l1l2 decays in terms of transversity amplitudes in non-universal Z’ model. These LFV

processes are extremely suppressed in the Standard Model (SM) because the expected levels at the SM lie far below current experimental sensitivities. In particular the branching...

Charm decays have immense potential to probe physics beyond the standard model [1, 2]. The charm sector has shown some interesting phenomena, for instance, $D^0-\bar{D^0}$ mixing and CP violation [3, 4]. The experimental upper bounds for the branching fractions are constrained at $7.9×10^{-8}$ for $D^0→e^+ e^-$[5] and $6.2×10^{-9}$ for $D^0→μ^+ μ^-$[6]. Recent results from the LHCb have...