18-23 March 2018
Florianopolis, Brazil
America/Sao_Paulo timezone

Renormalizability of pure $\mathcal{N}=1$ Super Yang-Mills in the Wess-Zumino gauge in the presence of the local composite operators $A^{2}$ and $\bar{\lambda}\lambda$

20 Mar 2018, 16:00
Florianopolis, Brazil

Florianopolis, Brazil


Rodrigo Carmo Terin


The $\mathcal{N}=1$ Super Yang-Mills theory in the presence of the local composite operator $A^2$ is analyzed in the Wess-Zumino gauge by employing the Landau gauge fixing condition. Due to the superymmetric structure of the theory, two more composite operators, $A_\mu \gamma_\mu \lambda$ and $\bar{\lambda}\lambda$, related to the susy variations of $A^2$
are also introduced. A BRST invariant action containing all these operators is obtained. An all order proof of the multiplicative renormalizability of the resulting theory is then provided by means of the algebraic renormalization setup. Though, due to the non-linear realization of the supersymmetry in the Wess-Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino.

Primary authors

Rodrigo Carmo Terin Dr Marcio Capri (Universidade do Estado do Rio de Janeiro) Dr Silvio Sorella (Universidade do Estado do Rio de Janeiro ) Mr Henrique Toledo (Universidade do Estado do Rio de Janeiro)

Presentation materials