Speaker
Description
We report on an experiment to measure the air-fluorescence from artificial air showers produced at the SLAC National Accelerator Laboratory. The showers have an energy of ~ 10^18 eV and are the result of a superposition of 10^9 10 GeV electons in a picosecond wide pulse. This electron pulse is pre-showered in 1, 2 or 3 radiation lengths of alumina ( Al2O3) and then allowed to develop in ambient sea-level air over a distance of 3 meters. A set of phototubes with appropriate filters detects the fluorescence light from this shower at a distance of 10 m perpendicular to the shower axis. The electron beam intensity is monitored by an induction coil. An additional monitor is provided by a rf horn antenna that picks up transition radiation from the last vacuum window before the beam impacts the alumina target. The pmt’s gains and spectral responses are carefully calibrated using the CRAYS system developed for the TA experiment at the ICRR in Tokyo. The total systematic error of the air fluorescence measurement is to be held to 10% or better. Preliminary data was taken in July to establish backgrounds and signal to noise levels. Based on this encouraging data the sFLASH experiment is scheduled for the end of September.
Presentation type | oral |
---|