17–29 Aug 2017
Europe/Athens timezone
CONFERENCE PHOTO: https://indico.cern.ch/event/559774/overview#preview:2369137

Support / Helpdesk

Insecurity of detector-device-independent quantum key distribution

21 Aug 2017, 19:30
30m
Talk C Quantum Physics, Quantum Optics and Quantum Information Poster session

Speaker

shihan sajeed (University of waterloo)

Description

Quantum key distribution (QKD) [1] is a technique that allows distribution of a secret random bit string between two separated parties (Alice and Bob). In theory, QKD provides information-theoretic security based on the laws of quantum physics. In practice, however, it does not, as standard QKD realizations cannot typically fulfill the demands imposed by the theory. As a result, any unaccounted device imperfection might constitute a side-channel which could be used by an eavesdropper (Eve) to extract the secret key without being detected. To bridge this gap, various approaches have been proposed, with measurement-device-independent QKD (mdiQKD) [2] probably being the most promising one in terms of feasibility and performance. Compared to standard prepare-and-measure QKD schemes [1], its security is based on post-selected entanglement. This allows to remove all detector side-channels from QKD implementations. Also, its practicality has been already confirmed both in laboratories and via field trials [3, 4]. However, one drawback of mdiQKD is that it requires high-visibility two-photon interference between independent sources, which makes its implementation more demanding than that of standard prepare-and-measure QKD schemes. Another limitation is its security proofs require larger post-processing data block sizes than those of standard QKD.

To overcome these limitations, a novel approach, so-called detector-device-independent QKD (ddiQKD), has been introduced recently [5–8]. It avoids the problem of interfering photons from independent light sources by using the concept of a single-photon Bell state measurement (BSM) [9]. As a result, it achieves the robust security of MDI-QKD, and at the same time provides the ease of implementation like standard prepare-and-measure QKD schemes. Also, its post-processing data block sizes are expected to be similar to those of standard prepare-and-measure QKD schemes [10]. To summarize, DDI-QKD was assumed to become the 'holy grail' of quantum key distribution protocols.

In this talk, I will show that, although it is widely assumed that DDI-QKD is robust to detector side-channels, it is in practice not true. Our main contributions are twofold. First, we show that, in contrast to mdiQKD, the security of ddiQKD cannot be based on post-selected entanglement alone, as initially thought in [5–8]. Hence, its security is not as robust as MDI-QKD. Second, we show that DDI-QKD is actually insecure against detector side-channel attacks by presenting various eavesdropping strategies that can fully compromise the security of the system.

The manuscript can be found at:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.250505

[1] C. H. Bennett and G. Brassard, in Proc. IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India) (IEEE Press, New York, 1984) pp. 175– 179.

[2] H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).

[3] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.- Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.- Y. Chen, and J.-W. Pan, Phys. Rev. X 6, 011024 (2016).

[4] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.- H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, Phys. Rev. Lett. (in press), arXiv:1606.06821 [quant-ph].

[5] P. Gonz ́alez, L. Rebo ́n, T. Ferreira da Silva, M. Figueroa, C. Saavedra, M. Curty, G. Lima, G. B. Xavier, and W. A. T. Nogueira, Phys. Rev. A 92, 022337 (2015).

[6] C. C. W. Lim, B. Korzh, A. Martin, F. Bussi`eres, R. Thew, and H. Zbinden, Appl. Phys. Lett. 105, 221112 (2014).

[7] W.-F. Cao, Y.-Z. Zhen, Y.-L. Zheng, Z.-B. Chen, N.-L. Liu, K. Chen, and J.-W. Pan, manuscript withdrawn by au- thors on 23 Aug 2016 owing to the insecurity of the proposed scheme, arXiv:1410.2928v1 [quant-ph].

[8] W.-Y. Liang, M. Li, Z.-Q. Yin, W. Chen, S. Wang, X.-B. An, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 92, 012319 (2015).

[9] Y.-H. Kim, Phys. Rev. A 67, 040301 (2003).

[10] C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden,
Phys. Rev. A 89, 022307 (2014).

Topic: Topic: Quantum Physics, Quantum Optics and Quantum Information

Authors

shihan sajeed (University of waterloo) anqi huang (university of waterloo) Dr Shihai sun (national university of defense technology, china) feihu xu (MIT) Dr Vadim makarov (university of waterloo) Dr marcos curty (University of Vigo)

Presentation materials

There are no materials yet.