The antinucleon-nuclei annihilation cross sections at low energies were systematicaly measured at CERN in the 80's and 90's with the LEAR facility and later with the Antiproton Decelerator. Unfortunately only few data exist for very low energy antiprotons (p<500 MeV/c) on medium and heavy nuclei.
A deeper knowledge is required by fundamental physics and can have consequence also in cosmology...
An exact solution to the heat equation in curved space is a much sought after; this report presents a derivation wherein the cylindrical symmetry of the metric in 3 + 1 dimensional curved space has a pivotal role. To elaborate, the spherically symmetric Schwarzschild solution is a staple of textbooks on general relativity; not so perhaps, the static but cylindrically symmetric ones, though...
The interaction of very low energy $\bar{p}$ and $\bar{n}$ with nuclei is interesting for its influence on both fundamental cosmology and nuclear physics. Measuring the annihilation cross section of antimatter on matter can help in solving the universe matter-antimatter puzzle and could give relevant hints in the definition of strong interaction model parameters as well.
The ASACUSA...
We discuss nonempty space physics of material fields in the 1938 interpretation of Einstein and Infeld. The extended carrier of radial energies contains chaotic motions of material densities associated to the rest mass-energy or internal relativistic heat. Chaotic (internal) and ordered (translation) kinetic energies tend to equal values under the free gravitational fall. This universal...
Quantum key distribution (QKD) [1] is a technique that allows distribution of a secret random bit string between two separated parties (Alice and Bob). In theory, QKD provides information-theoretic security based on the laws of quantum physics. In practice, however, it does not, as standard QKD realizations cannot typically fulfill the demands imposed by the theory. As a result, any...
The identification of jets originating from heavy flavour quarks is a crucial aspect in numerous searches at the Large Hadron Collider. In the context of the CMS experiment, a new tagger, DeepFlavour, that uses Deep Neural Networks has been developed. DeepFlavour is a multiclassifier that is found to outperform significantly other taggers used in CMS, being so far tested in simulation. This...
The "GeV-excess" of the diffuse gamma-rays, as observed by the Fermi-LAT satellite, is studied with a spectral template fit based on energy spectra for each possible process of gamma-ray emission. If all physical processes are included, one should be able to describe the whole gamma-ray sky in all regions, including the Galactic center, the Fermi Bubbles and the "GeV-excess". In addition...
Muons are of key importance to study some of the most interesting physics topics at the LHC.
We show the status of the performance of the muon reconstruction in the analysis of proton-proton
collisions at the LHC, recorded by the ATLAS detector in 2016 and 2017. Reconstruction efficiency
and momentum resolution have been measured using J/Psi and Z decays for different classes of...
We study the presence of thermodynamic instabilities in a nuclear medium at finite temperature and density where nuclear phase transitions can take place. Similarly to the low density nuclear liquid-gas phase transition, we show that such a phase transition is characterized by pure hadronic matter with both mechanical instability (fluctuations on the baryon density) that by chemical-diffusive...
This poster presents a search for heavy particles decaying into eμ final states with 13 TeV proton-proton collision data recorded with the CMS detector at the LHC. The search is interpreted using two different benchmark models. One of them is the scenario of resonant τ sneutrino production in R-parity violating supersymmetry, and the other is the non-resonant signal of Quantum Black Hole (QBH)...
A search for supersymmetry in events with a single electron or muon, hadronic jets and missing transverse momentum is presented. The data corespond to 35.9 fb−1 of proton-proton collisions recorded in 2016 by the CMS experiment at a center-of-mass energy of 13 TeV. The events are sorted into several exclusive search samples based on the number of jets and b-tagged jets, the scalar sum of the...
We search for x-rays from abnormal atomic orbit electron transitions that may violate the Pauli Exclusion Principle, in the VIP-2 experiment at Gran Sasso national laboratory. The candidate events come from a $2p$ electron transits into a $1s$ orbit which is occupied by two electrons. Such event, if exists, will have detectable energy difference from normal $2p-1s$ atomic transition by few...
After the discovery of a Higgs boson, the measurements of its properties are at the forefront of research. The determination of the associated production of a Higgs boson and a pair of top quarks is of particular importance as the ttH Yukawa coupling is large, and thus a probe for physics beyond the Standard Model.
The ttH production was analysed in various final states
with multileptons and...
The $\Lambda\Lambda$ bond energies ($\Delta B_{\Lambda\Lambda}$) of double-$\Lambda$ hypernuclei provide a measure of the nature of the in-medium strength of the $\Lambda\Lambda$ interaction. Likewise, the charge symmetry breaking in mirror nuclei with $\Lambda$ and $\Lambda\Lambda$ is expected to shed light on $\Lambda$N and $\Lambda\Lambda$N interactions. The $\Lambda\Lambda$-separation...
Inertial Confinement Fusion is a promising option to
provide massive, clean, and affordable energy for
mankind in the future. The present status of research
and development is hindered by hydrodynamical instabilities
occurring at the intense compression of the target fuel by
energetic laser beams.
We show here an analytical model.The compression of the target pellet can be negligible...
With quantum science in space we reach a regime of physics, where the interplay between general relativity and quantum theory is unclear. A contemporary experimental scenario is satellite-based quantum communication, where an investigation of the impact of gravitational effects is of both, fundamental and technological interest. Specifically, quantum field theory in curved space-time (or...
Relativistic heavy ion collisions are a unique way to form the quark gluon plasma (QGP). Measurements of the azimuthal anisotropy of particle production in relativistic heavy ion collisions have been used to study the initial condition and the relativistic hydrodynamic response of the hot and dense matter. The hydrodynamical response of the QGP to a given initial condition can be studied by...
The problem about the classical limit of Quantum Mechanis is a thorny and intriguing issue at the core of modern physics. There remain many doubts about this fundamental question of the foundations of Quantum Mechanics. In the literature, there are many procedures to aboard this matter, the best known and used are the Planck´s limit ( ) and the Bohr´s Correspondence Principle (n>>1). Nathan...
The size distribution of geometrical spin clusters is exactly found for the one-dimensional Ising model of finite extent. For the values of lattice constant ?$\beta$ above some “critical value” $\beta_c$ the found size distribution demonstrates the non-monotonic behavior with the peak corresponding to the size of the largest available cluster. In other words, for high values of the lattice...
Supersymmetry is undoubtedly a popular candidate for physics beyond the Standard Model. However, the origin of soft supersymmetry breaking masses has been usually depicted intricately in the literature via extra hidden/mediating sectors. Thus, a simple theory for the generation of the soft masses would be more compelling. Recently, our group discussed in two sequential papers a new approach to...
The time evolution of the strongly interacting matter created in a heavy-ion collision depends on the initial geometry and the collision centrality. This makes important the experimental determination of the collision geometry. In this presentation a procedure for event classification and estimation of the geometrical parameters in inelastic Pb-Pb collisions at the beam energy of 40 AGeV...
We seek to construct a quantum theory of hypercomplex fields, the
commutative ring of hypercomplex numbers allows us to have as internal symmetry U(1)xS0 (1,1). The hypercomplex fields encode information fields two charged particle. Normal ordering is not requiered to control the divergence of the vacuum.
Several possible extensions of the Standard Model predict the existence of a dark sector that is weakly coupled to the visible one: i.e. the two sectors couple via the vector portal, where a dark photon with mass in the MeV to GeV range mixes kinetically with the SM photon. If the dark photon is the lightest state in the dark sector, it will decay to SM particles, mainly to leptons and...
In this paper, S.M.T. (Surrounding Matter Theory), an alternative theory to dark matter, is presented. It is based on a modification of Newton’s law. This modification is done by multiplying a Newtonian potential by a given factor, which is varying with local distribution of matter, at the location where the gravitational force is exerted. With this new equation the model emphasizes that a...
To maintain the excellent performance achieved during Run 1 of the LHC, the Level-1 Trigger of the Compact Muon Solenoid (CMS) experiment underwent a significant upgrade. One part of this upgrade was the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) are...
Icarus is the largest imaging LAr TPC ever operated. During its LNGS run on the CNGS neutrino beam, from 2010 to 2013, produced some thousands neutrino events of unprecedented quality. This was possible thanks its mechanical precision and stability, liquid argon purity and electronics front-end and DAQ. In this poster the last issue (front-end and DAQ) will be presented in detail. Actually...
The laws of thermodynamics are fundamental laws of nature that classify energy changes for macroscopic systems as work performed by external driving and heat exchanged with the environment.The extension of thermodynamics to include quantum fluctuations faces unique challenges, such as the proper identification of heat and work, and the clarfication of the role of quantum coherence. We use a...
Hybrid photonic loss resilient entanglement swapping