Speaker
Description
The possibility of a very high energy electron-proton (VHEeP) collider with a
centre-of-mass energy of 9 TeV has been presented previously. Further developments are here discussed, summarising the results from a recent publication and highlighting opportunities for more investigation. At the VHEeP collider, with a centre-of-mass energy 30 times greater than HERA, parton momentum fractions, $x$, down to about $10^{-8}$ are accessible for photon virtualities, $Q^2$, of 1 GeV$^2$. The energy dependence of hadronic cross sections at high energies, such as the total photon-proton cross section, which has synergy with cosmic-ray physics, can be measured and QCD and the structure of matter better understood in a region where the effects are completely unknown. Searches at high $Q^2$ for physics beyond the Standard Model will be possible, in particular the significantly increased sensitivity to the production of leptoquarks. Other additional possibilities for future DIS experiments using a high energy electron beam accelerated using plasma wakefields are also discussed. Such beams could revitalise the field of DIS and investigate e.g. the proton density at very high x in fixed-target experiments.