Speaker
Description
The engineer design for CFETR, “China Fusion Engineering Test Reactor”, has start since 2017. Its magnet system includes the Toroidal Field (TF), Central Solenoid (CS) and Poloidal Field (PF) coils. The maximum field of TF will get around 14.5 T, which is much higher than that of other reactors. One full-scale TF coil will be built. Tremendous investigations need to be made in the development of high performance CICCs for CFETR TF before coil manufacutring. The TF conductor will operate with 87kA at 4.2K and 14.5 T. It will be subjected to much higher Lorentz force than ITER. The performance degradation during cycling will be one big issue. In order to reduce/avoid the degradation, the STP and CWS design were considered, and some R&D work was performed in 2018.
In this paper, the recent progress in development of CFETR TF CICC was described in details, in terms of superconducting material, design, strand damage analysis, press testing at low tempereature on conductor. The results show that the two designed conductor have similar mechanical property to ITER conductor with STP layout, which could avoid the degradation during operation.