Speaker
Description
Ultra-high field pulsed magnets must simultaneously satisfy a number of often competing electrical, electromagnetic, structural, thermal, and economic constraints. To produce the highest field possible, nondestructive pulsed magnets are designed to operate at the limits of mechanical strength and electrical capacity of conductors. In this presentation, we will introduce a coupled multi-engineering finite element method (FEM) implemented in COMSOL TM Multiphysics package for detailed and accurate calculations of the mechanical, thermal and electromagnetic performances in entire longitudinal cross-section of the pulsed magnet. These transient FEM simulations are performed for entire pulse length and take into account the temperature and magnetic field dependencies of electrical conductivity and mechanical properties of all the materials to provide better accuracy. Application Programming Interface (API) feature of COMSOL was used to automate repetitive modeling steps to significantly reduce the necessary time to create FEM models for a pulsed magnet which may consists up to thousands of turns and insulation/reinforcement layers. Computational results for our signature 100T non-destructive pulsed magnet will be presented.