Speaker
Description
Spoke type Permanent magnet synchronous motors (PMSM), which are superior to other PMSM in terms of output density by maximizing the surface area of permanent magnet (PM), have recently been actively studied. However, spoke type PMSM are magnetically separated by connecting each pole of the rotor core to a magnetically saturated rib or bridge. Therefore, there is a rotor structure in which magnetic potential difference may occur between neighboring poles. The magnetic potential difference between the rotor poles of such a spoke type PMSM induces leakage flux in the direction of the rotor axis. Since the leakage flux in the rotor axial direction has a component in the z-axis direction, this can be taken into consideration only through 3D analysis. This makes it difficult to analyze the performance of spoke type PMSM. Several studies have been conducted on the 3d leakage magnetic flux of the spoke type PMSM. However, in the previous studies only the axial leakage magnetic flux between the poles of the rotor was taken into consideration, and the linkage magnetic path between the rotor pole and the stator shoe via the axial direction was neglected. In this paper, we have further investigated the correction coefficient of spoke type PMSM which further improve the accuracy of 3d leakage paths as well as 3d linkage ones.