Conveners
Mon-Mo-Po1.01 - Quench Protection and Detection Systems I
- Maxim Marchevsky (LBNL)
- Konstantinos Bouloukakis (Victoria University of Wellington)
We focusing on investigating the protection of meter-class REBCO no-insulation (NI) coils applied in next generation high-field magnetic resonance imaging scanners. In order to address the issue of controllable contact resistance, we proposed a method is based on an external variable resistance, which is paralleled with an NI coil to realize the controllable contact resistance. It can maintain...
Cryogenic bypass diodes have been installed in all superconducting dipole magnets (1232) and all main superconducting quadrupole magnets (392) of the Large Hadron Collider (LHC) at CERN, and operated during the physics runs since 2009. The by-pass diodes are a fundamental ingredient of the quench protection system for those main dipoles and quadrupoles magnets. Diodes are located inside the...
In general, superconducting magnets operate at high currents, and excessive joule heating due to high currents can damage the magnet when quench occurs. Therefore, a quench protection system that can reduce the magnet current quickly is required when the normal zone occurs in the magnet. For this reason, several quench protection methods are being developed to rapidly reduce the current. In...
The quenching of superconducting magnets is one of the key issues affecting the safe and stable operation of superconducting devices. The effect of Magnetic flux jump and electro-magnetic stress leads to local critical current drop, continuous accumulation of heat of joint resistance, failure of refrigeration equipment or other auxiliary equipment, etc. These effects may cause quenching of the...
Recently, a new quench protection system using capacitor and switches has been announced to rapidly extract energy from high temperature superconducting (HTS) magnets. When a quench occurs, the quench protection system activates four MOSFET switches in sequence, and the energy stored in the magnet is extracted through an external resistor through a capacitor. In previous studies, the system...
Quench protection is critical for superconducting systems, especially those containing enough energy to damage the system during quench. We propose a new quench protection approach for multi-coil low temperature superconducting (LTS) systems that minimizes the number of protection components that must be activated during quench. In this approach, the electrically (and probably also...
Previously, we verified the feasibility of using a Raman-based distributed temperature sensor (RmDTS) system to measure a no insulated (NI) high temperature superconducting (HTS) coil temperature variation during an overcurrent induced quench event. In addition, to reduce the temperature response time of the RmDTS, we further optimized the whole measurement system. However, the combination...
When a quench occurs in a high field no-insulation (NI) high temperature superconductor (HTS) magnet that consists of a stack of double-pancake (DP) coils, a large amount of current is often induced in an NI DP coil that is electromagnetically coupled with neighbor DP coils. Depending on the strength of external magnetic field, the large induced current leads to an excessive magnetic stress...
HTS coils wound with insulated wires are actually quenched, even though HTS wires have a high quench margin and can be easily damaged, if the quench protection system does not work properly, especially in the case that current density of the magnet wires is high, It should be noted that the training effects as in LTS magnets have not been observed in HTS magnets and that damaged HTS magnets...
The superconducting wires have been developed for high field magnet, transformers, motors and so on. The quench detection and protection system are essential for safety operations of the HTS facilities. The high voltage signal conditioner (HVSC) method is generally used for the quench detection and protection, however, especially for high voltage operation magnet such as international...
The Large-scale Superconductor Test Facility (LSTF) serves as an important part of superconducting magnet load testing for fusion research which concerns about the nuclear energy producing. During the testing process, quench protection (QP) is indispensable for protecting the load from being overheated damaged. In this paper, a compatible and flexible QP framework is put forward to meet the...