Conveners
Mon-Mo-Po1.04 - High Field Magnets for Future Colliders
- Friedrich Lackner (CERN)
- Qingjin XU (IHEP, CAS)
This paper presents a 3D mechanical analysis study of the mechanical behaviour of the complete magnet structure of the Block-coil Dipole option for the future Circular Collider. The analysis includes three steps: (i) pre-loading with bladders and keys, (ii) cooling down from room to operating temperature, (iii) ener-gization at operating temperature. The main objective of the 3D optimization...
Superconducting accelerator dipole magnets, based on Nb3Sn technology, with a nominal operation field of 16 T in a 50 mm aperture are being considered for the Future Circular Collider (FCC) with a center-of-mass energy of 100 TeV and a circumference in the range of 100 km, or an energy upgrade of the LHC (HE-LHC) to 27 TeV. To demonstrate the feasibility of such magnets, a twin-aperture 16T...
The Italian Institute for Nuclear Physics (INFN), in collaboration with CERN, is going to build the short model in Nb3Sn of the main bending dipole for the Future Circular Collider (FCC). The magnet will be developed on the basis of the baseline design presented in the FCC Conceptual Design Report (CDR) in the end of 2018. The magnet is based on cosine-theta design, with an internal aperture...
The forecast hadronic synchrotron studied in the FCC-hh program aims to reach 100 TeV center-of-mass collision energy using 16 T bending dipole magnets along a 100 km long ring. Gaining such magnetic field occupying a reasonable volume requires new technologies to be tested and validated on demonstrators. In collaboration with CERN, CEA is developing F2D2, the FCC Flared-end Dipole...
As part of an international collaboration, CERN has recently published a Conceptual Design Review of the Future Circular Collider (FCC), a proposed particle accelerator to succeed the LHC. Under the options considered, a proto-proton accelerator with collision energies up to 100 TeV, would require approximately 4’500 Nb3Sn superconducting dipole magnets operating at 16 T fields, installed in a...
We report the design for a hybrid block-coil dipole using advanced cable-in-conduit windings. The dipole is designed for use in the arcs of an energy-doubling lattice in the LHC tunnel.
The block coil design facilitates configuration of hybrid sub-windings of Bi-2212, Nb3Sn, and NbTi, each operating to the same fraction of critical current.
The cryogenics utilizes supercritical helium,...
Aiming to develop a combined superconducting magnet for a fourth-generation ECR source operating at 45 GHz at the Institute of Modern Physics (IMP) in Lanzhou of China, a significant gain in performance can be achieved by using Nb3Sn to allow solenoids and sextupole coils to reach a high field of 12 T. In consideration of special design of the sextupole-in-solenoid shape, the supporting...
The first 100-m iron-based superconductor (IBS) tape was produced by Institute of Electrical Engineering, Chinese Academy of Sciences (IEE-CAS) using the powder-in-tube technique in 2016. Since then, the development of IBS tape provides an opportunity to propel the practical IBS application. In this study, the world first IBS racetrack coil was made using a 100-m 7-filamentary Ba1-xKxFe2As2...
The Institute of High Energy Physics (IHEP, China) has been engaged in the development of shell-based dipole magnet with common-coil configuration for the pre-study of Super proton-proton Collider (SppC) project. The first subscale magnet LPF1, with two Nb3Sn coils and four NbTi coils, reached a bore field of 10.2 T at 4.2 K. Then a higher safety margin model has been proposed as LPF2, which...
MQXF is the Nb3Sn Low-β Quadrupole magnet that the HL-LHC project is planning to install in the LHC interaction regions in 2026 to increase the LHC integrated luminosity by about a factor of ten. The magnet will be fabricated in two different lengths: 4.2 m for MQXFA, built in the US by the Accelerator Upgrade Project (AUP), and 7.15 m for MQXFB, fabricated by CERN. In order to qualify the...