Conveners
Beyond II
- Celine Boehm (morning)
- Marcus Werner (afternoon)
Identification of dark matter has been an outstanding problem in physics for decades, and axion (or axion like partciles) is its candidate with great motivations. A number of observations and experiments have tried to detect axion by using the axion-photon conversion by assuming the axion is coupled to photon, while no signal yet to be found. In this talk, I will discuss new techniques to...
In this talk, I will discuss the methods to search for dark matter or dark sector particles having the masses from GeV to the Solar Mass. We can probe their properties by colliders, neutrino or gamma ray experiments.
Direct detection experiments relying on nuclear recoil signatures lose sensitivity to sub-GeV dark matter for typical galactic velocities. This sensitivity is recovered if there exists another source of flux with higher momenta. Such an energetic flux of light dark matter could originate from the decay of mesons produced in inelastic cosmic ray collisions. I present in this talk the dark...
Incorporating three generations of right-handed Majorana neutrinos to quintessential inflation, we construct a model which simultaneously explains inflation, dark energy, dark matter and baryogenesis. These right-handed neutrinos have hierarchical masses $M_3 \sim 10^{13}$GeV, $M_2 \sim 10^{11}$GeV, $M_1 \sim 10$keV and are produced by gravitational particle production in the kination regime...
1 minute 1 slide oral presentation;
I will give an introductory review talk on extensions of general relativity, covering the following contents.
1. Introduction
2. General relativity and Lovelock gravity
3. PPN formalism
4. EFT approach
5. Massive gravity
6. Summary
Theories of massive gravity and their generalizations have been used for the description of the late time and early universe cosmologies. These theories however are strongly coupled at a certain low energy scale. We show how this problem can be avoided by embedding massive gravity and its generalizations into higher dimensional theories.
I will discuss scalar-tensor models of gravity, which predict the spontaneous scalarization of neutron stars or/and black holes. In the cosmological setup, the scalar field responsible for scalarization is subject to a tachyonic instability during inflation as well as at other cosmological stages, depending on the model. The instability poses a problem for viability of such models. I will show...
Modified gravity theories are typically constructed in the Jordan frame, where the matter follows the geodesics of the metric. This is nothing more than a choice of field variable that leaves the observables intact. However recent developments in classical field theory revealed that fixing variables may affect how the fundamental assumptions in the theory building process are represented. For...