Speaker
Description
In the analysis of heavy-ion fusion cross-sections, the relativistic effects are usually ignored [1]. However, it is known that the fastest nucleons in a nucleus have the velocity close to a quarter of the speed of light. The relativistic mean-field (RMF) theory accounting for the effects of high nucleons velocity was successfully applied to reproduce the binding energies and astrophysical S-factors for proton-induced reactions [2].
In the present work, we demonstrate the results of the application of the RMF theory for describing the heavy-ion above-barrier fusion process of complex nuclei. The modeling is performed within the framework of a trajectory model [3-5] based on the double-folding approach and accounting for energy dissipation. We employ six different RMF parameter sets for the effective nucleon-nucleon (NN) forces. The forces as well as the resulting potentials and cross-sections are compared with those obtained using the non-relativistic M3Y NN-forces.
It turned out that several of the RMF parameter sets appeared to be inapplicable for the dynamical calculations of the fusion cross-sections. For the feasible parameter sets, we perform a quantitative comparison of the calculated above-barrier fusion excitation functions with the experimental ones for reactions involving spherical colliding nuclei.
1. Newton et al. // Phys. Rev. C 70 (2004) 024605.
2. Lahiri et al. // Int. J. Mod. Phys. E 25 (2016) 1650015.
3. Gontchar et al. // Phys. Rev. C 89 (2014) 034601.
4. Chushnyakova et al. // Phys. Rev. C 90 (2014) 017603.
5. Chushnyakova et al. // Nucl. Phys. A 997 (2020) 121657.