Production of the 186mRe isomer in nuclear reactor

17 Oct 2020, 14:10
25m
Online

Online

Oral report Section 3. Modern nuclear physics methods and technologies. Section 3. Modern nuclear physics methods and technologies

Speaker

Vladimir Koltsov (Khlopin Radium Institute, Saint Petersburg, Russia)

Description

The nuclear isomeric state ${}^{186m}$Re with an energy of 149 keV and a half-life of 2×$10^{5}$ years is of great interest for experiments on the stimulation of de-excitation of nuclear isomers in plasma [1, 2]. In this work, the possibility of reactor production of a substance with a high concentration of ${}^{186m}$Re isomer is considered. A cross section of about 0.3 barn of excitation of the ${}^{186m}$Re isomer by the thermal neutrons capture by ${}^{185}$Re nuclei was obtained in [3]. Compared to this reaction, the excitation of the ${}^{186m}$Re isomer in inelastic neutron scattering by ${}^{186}$Re nuclei in the ground state, decaying with a period of 90 hours, or in (n, 2n) reactions on the ${}^{187}$Re isotope is not significant.
This conclusion corresponds to the production of the ${}^{186m}$Re isomer in 2006 at the WWR-M reactor at the Petersburg Nuclear Physics Institute, when the metal powder of natural rhenium was simultaneously irradiated in the B-8 channel (thermal neutrons) and in the reactor core, where the neutrons were more high-energy. Within the measurement error of the neutron fluence for both samples, the isomer production was proportional to the fluence of thermal neutrons with an isomer cross section of 0.29 ± 0.06 barn (error at the level of one standard deviation), which coincides with the result of [3].
Thus, to produce the isomer, the ${}^{185}$Re isotope should be placed in the thermal neutron flux. The exposure is limited to the burn-up of the ${}^{185}$Re isotope and the produced ${}^{186m}$Re isomer. The production of the ${}^{186m}$Re isomer is maximum at a neutron fluence of Фmax ≈ 2×$10^{22}$ cm${}^{–2}$, while the number of ${}^{186m}$Re nuclei is 0.2% of the starting number of ${}^{185}$Re nuclei. To obtain material of the pure ${}^{186m}$Re isomer, it is first possible to clean the irradiated rhenium from chemical impurities on an ion-exchange column and then isolate an isotope with a mass number of 186. This will be the practically pure ${}^{186m}$Re isomer, since ${}^{186}$Re nuclei in the ground state decay quickly. For this operation, gas-centrifuge separation of rhenium isotopes in the form of hexafluoride, the boiling point of which is only 33.7°C, is promising.
Interestingly, a pure ${}^{186m}$Re metal will essentially be a new state of matter.

  1. V.V.Vatulin, N.V.Jidkov, A.A.Rimsky-Korsakov et al. // Bull. Russ. Acad. Sci: Phys. 2017. V. 81. № 10. P. 1159.
  2. V.V.Koltsov. “On stimulation of nuclear isomer de-excitation in plasma of electric explosion of conductors”. Proc. Int. Conf. “Nucleus-2018” - 68th Meeting on Nuclear Spectroscopy and Atomic Nucleus Structure. Voronezh, Russia July 2-5, 2018. P. 127.
  3. D.W.Seegmiller, M.Linder, R.A.Meyer // Nucl. Phys. 1972. V. A185. P. 94.

Author

Vladimir Koltsov (Khlopin Radium Institute, Saint Petersburg, Russia)

Presentation materials