Speaker
Description
The electron transport via defect network becomes important in highy irradiated solid state and in Si clusters of defects induced by hadron irradiation if it acts as a dipole type recombination center.
Electron transport via localized defect sites can be roughly described by Fermi Golden Rule type hopping. However, this approach does not include electron delocalization among nearby defect atoms, the spectral content of the crystal is poorly accounted for as well. Instead, we develop a microscopic theory for this problem based on the tight binding model with respect to the defect sites, what allows proper description of partly delocalized defect-related electron wave-functions. The concepts of quantum relaxation theory are applied to include phonon spectral densities involved in system-bath energy exchange processes. Consequently we obtain the temperature and concentration-dependent electron transport via defects.