July 28, 2020 to August 6, 2020
virtual conference
Europe/Prague timezone

Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

Jul 30, 2020, 10:05 AM
virtual conference

virtual conference

Talk 12. Operation, Performance and Upgrade of Present Detectors Operation, Performance and Upgrade of Present Detectors


Ben Nachman (Lawrence Berkeley National Lab. (US))


Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS detector at the Large Hadron Collider (LHC). As the closest detector component to the interaction point, these detectors will be subjected to a significant amount of radiation over their lifetime: prior to the High Luminosity LHC (HL-LHC), the innermost layers will receive a fluence of 1-5 10^15 1 MeV neq/cm2 and the HL-HLC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. Simulating radiation damage is critical in order to make accurate predictions for current future detector performance that will enable searches for new particles and forces as well as precision measurements of Standard Model particles such as the recently discovered Higgs boson. A model of pixel digitization is presented that includes radiation damage effects to the ATLAS pixel sensors for the first time. In addition to a thorough description of the setup, predictions are presented for basic pixel cluster properties alongside early studies with LHC Run 2 proton-proton collision data.

Primary author

Marco Bomben (LPNHE & Université de Paris, Paris (FR))

Presentation materials