Speaker
Description
Superconducting Magnetic Energy Storage (SMES) has the advantages of fast response speed, large energy storage density and low loss, which is suitable for dynamic power compensation of power systems. During operation, the superconducting magnet exchanges power with the AC grid through the power conditioning system (PCS). The PCS generally adopts a PWM converter based on a high-frequency switching device, and its output PWM pulse voltage with a steep rising / falling edge is transmitted to the superconducting magnet through a cable and a current lead. A peak overvoltage is generated at the terminal of the superconducting magnet, which in turn causes the voltage distribution inside the magnet winding to become uneven, threatening the safety of the magnet operation.
In this paper, when the SMES magnet is subjected to high-frequency PWM pulse voltage, simulations were conducted on the overvoltage distribution characteristics in the superconducting magnet. From the perspective of optimizing magnet operation parameters, the relationship between operation mode and voltage distribution characteristics is studied. And the optimization design method of operation mode to reduce the unevenness of voltage distribution is explored. The design scheme of 3.8MJ SMES in microgrid was corrected and modified, and the feasibility of the optimized design of operation mode was verified.