The major difficulty of the quench detection of the superconducting magnetic system (SMES) is that the pulsating voltage of the converter is much larger than the local normal-zone voltage of the HTS coils. It is therefore difficult to detect the quench of the superconducting coil (SC) with the voltage measurement method. This paper presents a novel quench detection method without additional...
During 2020, the SULTAN test facility was upgraded to host Quench Experiments on HTS conductors. In the frame of the EUROfusion program, few cables based on the Swiss Plasma Center (SPC) Twisted Stack-Tapes design have been manufactured and successfully tested. Each conductor addresses a specific design parameter. For the first time, it was possible to observe the quench evolution and...
High–temperature superconductors (HTSs) still hold some unignorable issues, such as AC losses and its poor robustness against normal transition. For HTS tapes, dividing superconducting layer into filaments by striation shows remarkable effects on reducing AC losses. However, it could deteriorate robustness due to blocking a current sharing among filaments. Thus, plating copper on the entire...
Nb3Sn conductors are prone to quench due to deposition of heat energy from disturbances such as flux jumps and cracking of nearby epoxy, which push the conductor into the normal state. In Nb3Sn magnets, this manifests as training, wherein the magnet can reach a progressively higher current after a succession of quenches. By incorporating substances with a higher heat capacity at cryogenic...
Due to the normal zone propagation velocity (NZPV) of a high temperature superconductor (HTS) being about 100-1000 times slower than that of a low-temperature superconductor (LTS), the quench detection is a difficult challenge for HTS structures so far. To propose more effective quench detecting methods and criterion, it is necessary to reveal the mechanism and multi-field coupling behavior...
For future larger and higher energy particle accelerator, the Fourth superconducting electron cyclotron resonance ion source (FECR) is building in Institute of Modern Physics, Chinese Academy of Science. In order to verify the technology of the Nb¬3Sn superconducting magnet for FECR, a prototype which consists of two axis solenoid coils and six sextupole coils with cold iron yoke has been...
The 9.4-T whole-body MRI superconducting magnet system with a warm bore of 800mm in diameter has been designed and fabricated in the Institute of Electrical Engineering, Chinese Academy of Sciences (IEE, CAS) for bioscience research applications. A passive quench protection system with the coil subdivisions and the heater network to accelerate quench propagation has been employed to avoid the...
VIPER cable is a high-current and high-field capable high temperature superconducting (HTS) cable designed by MIT and Commonwealth Fusion Systems (CFS) for large scale superconducting magnet system applications. The VIPER cable design is based on the high-temperature superconductor cable architecture known as Twisted Stacked Tape Conductor (TSTC) first proposed by Takayasu et al. [1]. Several...