Speaker
Description
Long-baseline neutrino oscillation experiments are currently limited by systematic error due to nuclear effects of neutrino interactions. Obtaining new input data, especially of nuclear-free neutrino interactions at MeV tracking threshold for protons, could help to reduce these uncertainties.
A suitable detector that could provide a large number of neutrino-hydrogen interactions is the high-pressure gaseous time projection chamber, which is foreseen for DUNE's near-detector suite.
With the projected neutrino exposure, $\cal{O}(10^4)$ neutrino-hydrogen events per year could be achieved with a filling of 50% Ar+alkanes, using the transverse-kinematic-imbalance method.
For design and operation of such a pressurized TPC, it is essential to study microscopic tracking parameters, e.g. drift velocity, to ensure performance at large detector scales. A systematic study of hydrogen-rich argon-alkane mixtures is presented and assessed in terms of expected operational abilities and challenges.
TIPP2020 abstract resubmission? | No, this is an entirely new submission. |
---|