May 24 – 28, 2021
America/Vancouver timezone

Absolute primary scintillation yield in Xe for electrons and alpha particles

May 25, 2021, 5:00 AM
Poster Sensors: Gaseous Detectors Sensor Posters: Gaseous Detectors


Dr Carlos Henriques (University of Coimbra)


Xenon scintillation has been widely used in recent particle physics experiments. However, information on primary scintillation yield in the absence of recombination is still scarce and dispersed. The mean energy required to produce a VUV scintillation photon (Wsc) in gaseous Xe has been measured in the range of 30-120 eV. Lower Wsc-values are often reported for alpha particles compared to electrons produced by gamma or x-rays, being this difference still not fully understood.
We carried out a systematic study of the absolute primary scintillation yield in Xe at 1.2 bar, using a Gas Proportional Scintillation Counter. The simulation model of the detector's geometric efficiency was benchmarked through the primary and secondary scintillation produced at different distances from the photosensor. Wsc-values were obtained for gamma and x-rays with energies in the range 5.9-60 keV, and for 2-MeV alpha particles. No significant differences were found between alpha particles and electrons.

TIPP2020 abstract resubmission? No, this is an entirely new submission.

Primary author

Dr Carlos Henriques (University of Coimbra)


Ms Joana Teixeira (LIBPhys) Rui Daniel Mano (LIBPhys-UC) Mr Silva Pedro (LIBPhys-Coimbra) Diego Gonzalez Diaz (Universidade de Santiago de Compostela (ES)) Cristina Bernardes Monteiro (Univercity of Coimbra)

Presentation materials