Speaker
Description
The determination of the Higgs self-coupling from di-Higgs events with very high precision is one of the clearest benchmarks for the FCC-hh. Its potential has been well established already in several final states. In this talk studies into final states of the di-Higgs system which involve neutrinos are presented. The benefit of studying yet another di-Higgs final state is two-fold: First, any additional events included will add further precision to the measurement. Second, specifically neutrino channels will help to shed light on an experimental aspect for the FCC-hh which has not been well investigated yet: a robust reconstruction of the missing transverse momentum (ETMiss) is crucial for such analyses. It is is clear that ETMiss reconstruction at the FCC-hh will be extremely challenging due to the high pile-up environment, with average interactions per bunch crossing of the order of 1000. In particular, bbWW, bbττ and bbZZ signals are analysed in the final state with 2 light charged leptons in addition to ETMiss, using cut-based as well as multi-variate techniques. Their expected sensitivity is extracted, and the impact of different scenarios for systematic uncertainties, such as the worsening of the ETMiss resolution, is assessed.
Type of talk | Future prospects |
---|