Conveners
Parallel Session A: part 1
- Taku Gunji (University of Tokyo (JP))
Parallel Session A: part 2
- In Kwon Yoo (Pusan National University (KR))
Parallel Session A: part 3
- Nu Xu
Parallel Session A: part 4
- Yukinao Akamatsu (Osaka University)
The relativistic hydrodynamic model has been vital to the analysis of the QCD matter created in high-energy heavy-ion collisions. Experimental data indicate that low momentum particles are thermal and hydrodynamic, while high momentum particles are non-thermal and perturbative. We investigate two scenarios - (i) the Tsallis hydrodynamic model where an extended momentum range is treated as...
Directed flow ($v_{1}$) describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. The pseudorapidity ($\eta$) dependence of $v_{1}$ can provide unique constraints on the initial conditions and dynamical evolution of the Quark Gluon Plasma (QGP). Directed flow in both spectator and participant regions is sensitive to early non-equilibrium...
The nuclear equation of state (EOS) plays a crucial role in understanding diverse phenomena in nuclear structure and reactions, as well as in astrophysics. Heavy-ion-collision measurements in combination with transport model simulations serve as important tools for extracting the nuclear EOS. In this talk, I will introduce some results on constraining the nuclear EOS with elliptic flow in...
Studies of longitudinal de-correlation of anisotropic flow can provide unique constraints on the three-dimensional structure of the initial stages and dynamical evolution of the quark-gluon-plasma in heavy-ion collisions. Experimentally, the factorization ratio, $r_{n}(\eta)(n = 2,3)$, is used to quantify the amount of the longitudinal flow de-correlation with pseudorapidity [1-3]. With data...
We study the two-point functions from chiral kinetic theory which characterize the response to perturbative vector and axial gauge fields in magnetized chiral plasma. In the lowest Landau level approximation, the solution of chiral kinetic equations gives density waves of electric and axial charges, which contain chiral magnetic wave implied by the axial anomaly and magnetic field. We then...
Relativistic heavy ion collisions, especially the recent isobar ($^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr) collisions, provide an opportunity to determine the structures of the colliding nuclei with good precision. Nuclear deformation, triaxiality, and sub-nucleon structure have recently been studied by $v_{n}-p_{T}$ correlations; size and shape differences between Ru...
Event-by-event fluctuations of mean transverse momentum, $\langle p_{\rm{T}}\rangle$, help to characterize the properties of the bulk of the system created in ultrarelativistic heavy-ion collisions, called the quark-gluon plasma (QGP). The fluctuations are closely related to the dynamics of the phase transition from the QGP to a hadron gas.
In this contribution, event-by-event fluctuations...
The QCD phase transition signals at RHIC are expected to be observed via the measurement of net-proton's high order cumulants [1]. In this talk, we will present our recent study of dynamical effects on the high order cumulants of the QCD chiral field in a system with finite-size. We find much stronger memory effects on the first-order phase transition side than on the crossover side. Besides,...
In this work, we explore the impact of expansion of medium on angular distribution of gluons at different kinematical scales in a medium-induced cascade. Firstly, we study the scaling of the gluon spectra at low−$x$ between expanding and static media and numerically obtain transverse momentum broadened spectra. Next, we study angular distributions for the in-cone radiation for different media...
We study the energy loss of a quark moving in the strongly coupled $\mathcal{N} = 4$ supersymmetric Yang-Mills (SYM) plasma under the influence of spatial anisotropy. The heavy quark drag force, the diffusion coefficient and the jet quenching parameter are calculated within the Einstein-Maxwell-dilaton model, in which anisotropic background is specified by an arbitrary dynamical exponent...
We present a study of the nuclear-medium induced transverse momentum broadening of particle production in future electron-ion-collision (EIC) experiments. By considering the multiple scattering between hard partons and cold nuclear medium within the higher-twist factorization framework in perturbative QCD, we calculate the transverse momentum broadening of single hadron production in...
For studying small-x gluon saturation in forward dijet production in high-
energy dilute-dense collisions, the improved TMD (ITMD) factorization formula was recently proposed, which contains the leading-twist TMD factorization formula relevant for small gluon’s transverse momentum kt, but also incorporates an all-order resummation of kinematical twists, resulting in a proper matching to...
Measurements of heavy quarkonium in heavy-ion collisions provide a powerful tool to study the properties of the Quark-Gluon Plasma (QGP). Due to the color screening effect, the dissociation of heavy quarkonium was proposed as a direct signature of the QGP formation. Compared to charmonia, bottomonia are cleaner probes because of negligible regeneration contribution at the top RHIC energy....
The information on the quarkonium production in heavy ion collisions is important to probe the heavy-quark dynamic in the quark-gluon plasma (QGP). The suppression of quarkonia production is particularly interesting since it comprises different in-medium effects such as color screening or recombination. But due to the inclusiveness of the nuclear modification factor used to quantify the...
Charmonia are excellent probes of deconfinement in heavy-ion collisions. Due to different binding energies between J/$\psi$ and $\psi$(2S),the hot nuclear matter effects have different impact on the production yields of the ground and excited states. The measurements of the J/$\psi$ and $\psi$(2S) in the same collision system will give an insight to the charmonium production mechanisms in...
We show for the first time that heavy flavor quenching and flow can be utilized to probe the equation of state (EoS) of quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions. Based on our quasi-particle linear Boltzmann transport (QLBT) model that is coupled to a (3+1)-dimensional viscous hydrodynamic simulation of the QGP and a hybrid fragmentation-coalescence approach for...