Conveners
Day 2 - Session 4: Avalanche Based Sensors
- Yasushi Fukazawa
- Yasushi Fukazawa (Hiroshima University)
The MONOLITH H2020 ERC Advanced project aims at producing a monolithic silicon pixel ASIC with 50µm pixel pitch and picosecond-level time stamping. The two main ingredients of the project are fast and low-noise SiGe BiCMOS electronics and a novel sensor concept, the Picosecond Avalanche Detector (PicoAD). The PicoAD uses a patented multi-PN junction to engineer the electric field and produce a...
Future HEP experiments will consider measuring concurrently the position and the time of a particle hit with very good accuracy, i.e., 4D-trackers will be the basic option for future detection systems. Within this framework DC-coupled Resistive Silicon Detectors (DC-RSD) low-gain avalanche diodes (LGAD), an evolution of the AC-coupled design, are considered a very promising option. They...
Novel collider experiments demand an increased performance of the silicon detectors used, such as withstanding 1×10$^{17}$ n$_{eq}$/cm$^2$ in unprecedented pile-up conditions, and providing time resolution around 10ps. Currently, Low Gain Avalanche Diodes (LGADs) are the standard, achieving resolutions below 30ps. However, their limited radiation hardness is an area of ongoing research. As...
PIONEER is a next-generation experiment proposed at the Paul Scherrer Institute to perform high precision measurements of rare pion decays. By improving the precision by an order of magnitude on the charged-pion branching ratio to electrons vs. muons and the pion beta decay, PIONEER will provide a pristine test of Lepton Flavour Universality and the Cabbibo angle anomaly. At the centre of the...