Conveners
Day 3 - Session 1: Radiation Damage
- Paul Miyagawa (University of London (GB))
The High Luminosity upgrade of Large Hadron Collider (HL-LHC) will increase the LHC Luminosity and with it the density of particles on the detector by an order of magnitude. For protecting the inner silicon detectors of the ATLAS experiment and for monitoring the delivered luminosity, a radiation hard beam monitor has been developed. We developed a set of detectors based on polycrystalline...
Irradiating a semiconductor with energetic particles gives rise to structural damage and defect formation via nonionizing energy loss processes. The build-up of stable radiation damage often proceeds via complex dynamic annealing processes, involving point-defect migration and interaction. This also occurs during the ion-implantation for electronic device fabrication and resulting defect...
The proven radiation hardness of silicon 3D devices up to fluences of $1 \times 10^{17}\,n_{eq}/cm^{2}$ makes them an excellent choice for next generation trackers, providing $<10\,\mu m$ position resolution at a high multiplicity environment. The anticipated pile-up increase at HL-LHC conditions and beyond, requires the addition of < 50 ps per hit timing information to successfully resolve...
With the upgrade of the LHC to the High-Luminosity LHC (HL-LHC), the Inner Detector will be replaced with the new all-silicon ATLAS Inner Tracker (ITk) to maintain tracking performance in a high-occupancy environment and to cope with the increase in the integrated radiation dose.
Comprising an active area of 165m2, the outer four layers in the barrel and six disks in the endcap region will...