22–26 Jul 2024
CICG - GENEVA, Switzerland
Europe/Zurich timezone

Enhancing liquid air energy storage efficiency through integration with LNG: comparative analysis of cold energy recovery methods

23 Jul 2024, 14:00
2h
Poster area

Poster area

Poster Presentation (120m) ICEC 01: Large scale refrigeration and liquefaction Tue-Po-1.1

Speaker

Junxian Li (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences)

Description

Liquid air energy storage (LAES) technology is characterized by its high energy storage density, geographical independence, and ease of integration with other systems. The LAES integrates and offsets the intermittency and volatility of renewable energy sources. However, air compression and liquefaction processes significantly impact the round-trip efficiency of the entire LAES system. This study proposes the integration of an external cold source with the LAES system to recover cold energy and enhance the system’s energy efficiency. Liquefied Natural Gas (LNG) serves as an effective external cold source when coupled with LAES. The coupling of LNG and the LAES is achieved by providing cold energy to the system in two ways: reducing the system’s compression work and supplementing cold energy to assist in liquefaction. This paper compares and analyzes these two methods to enhance system performance, serving as a reference for research on the integrated system of LNG and LAES.

Submitters Country China

Authors

Junxian Li (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) Xiaoyu Fan (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) Zhikang Wang (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) Yihong Li (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) Zhaozhao Gao (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) Wei Ji (Zhonglv Zhongke Energy Storage Technology Co., Ltd.) Liubiao Chen (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) Junjie Wang (Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences)

Presentation materials