Speaker
Description
Significant improvements have been made to the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at CERN-ISOLDE in recent years.
A versatile ion source setup has been developed to support the range of ionization properties of the elements under investigation at CRIS. This has required combining surface, plasma and laser ablation sources with compatible ion optics and has allowed atomic studies independent of the ISOL facility’s limited beamtime.
The beamline itself has also been upgraded on the road towards truly collisional-free background conditions, needed for measurements of the lowest isotopic yield cases. The vacuum in the interaction region now reaches 1x10-10 mbar, a factor of 200 improvement from the previous years.
This was achieved by additional vacuum pumping technologies, adjustable differential pumping apertures, as well as a 3-axis adjustable charge-exchange cell, which has mutually improved the atom-laser beam overlap. Remote actuation of systems such as valves and Faraday cups and automation of beam-tune optimization have also been incorporated.
These developments and relevant results will be presented in the talk, in addition to future prospects such as field-ionisation, ion-ionisation and anion-neutralisation.