A NEW OFF-LINE ION SOURCE FACILITY AT IGISOL
M. Vilén and the IGISOL group
Department of Physics, University of Jyväskylä, P.O.B. 35 (YFL), FIN-40014, Finland
email: markus.k.vilen@student.jyu.fi
A new beamline for off-line ion sources has been commissioned at the IGISOL [1] (Ion Guide Isotope Separator On-Line) facility at the University of Jyväskylä, Finland. It allows parallel operation...
MLL-Trap is a double Penning-Trap for high precision mass measurement of exotic nuclei, built and commissioned off-line at the Maier-Leibnitz Laboratory in Garching, Germany [1] and currently installed at the ALTO facility at IPN in Orsay. A new double trap geometry is being studied, in which the central electrode of the second trap has been replaced by an arrangement of four silicon strip...
The ionization by radial electron neat adaptation (IRENA) ion source has been designed to operate under extreme radiation conditions. Based on the electron beam generated plasma concept, the ion source is specifically adapted for thick target exploitation under intense irradiation. A validation prototype has already been designed and tested offline. The design of a new optimized prototype for...
The ion beams extracted from modern ion sources are usually characterized by complicated charge and mass state distributions of the particles. To predict accurately the behavior of the ion bunch with complicated structure in magnetic field of the separator the PyCAMFT code is developed. The 3D-code realized with Python allows to treat various particle density and charge distributions, various...
The AstroBox2 detector [1] is a gas-filled calorimetric detector for almost background free low-energy beta-delayed particle spectroscopy. It is an upgraded version of the original AstroBox proof-of-concept detector [2] based on Micro Pattern Gas Amplifier Detector (MPGAD) technology. After the initial commissioning described in [1] some extensive upgrades have been made in conjunction with...
Over the past decades, laser ion sources have proven to be a selective and efficient ion source for high purity radioactive isotope and isomer beam research. Advanced control systems are a necessary tool for high resolution measurements and easy control of the laser ion source. In this framework, a new control and data acquisition system has been developed at KU Leuven. Furthermore, accurate...
The collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE has grown over the years to include a multitude of devices and hardware. Control of these devices, and logging of the data that they produce, requires software that communicates across several computers, in different locations (beam line, laser laboratory, data center). In this poster, a schematic overview of the...
The construction of the heavy ion accelerate complex, RAON (Rare isotope Accelerator complex for ON-line experiments), has been carried out under RISP of IBS since 2011. The major accelerator systems, QWR(quarter-wave resonator) and HWR(half-wave resonator) of low energy LINAC system, are in the process of mass production after demonstrating of functional readiness through SCL(super–conducting...
A new-generation radioactive isotope (RI) beam facility called the RI Beam Factory (RIBF) has been operating at the RIKEN Nishina Center since 2007. A wide variety of RI beams have been produced using the BigRIPS in-flight separator to perform various studies of exotic nuclei far from stability. Not only the projectile fragmentation of heavy-ion beams, such as $^{14}$N, $^{18}$O, $^{48}$Ca,...
A prototype ion source for RIB production in reactor has been developed at China Institute of Atomic Energy(CIAE) to demonstrate the feasibility. The ion source has to be compact enough to fit into the neutron tunnel of the reactor. Also the ion source has to withstand the tens of kW heat from target fission. A electric heater is uesd to simulate the fission heat, at the same time the cathode...
Double beta decays in Xe-136 result in the production of a Barium ion. In gas phase it is expected that a Ba++ ions is produced. Tagging Ba++ becomes thus, an unmistakable signature of the decay and can lead to a background-free neutrinoless double beta decay experiment. In this poster a Ba++ ion source based on a fs laser is presented. Such a source can be used as a part of the Barium...
To improve the thermal model of high power Isotope Separation On-Line (ISOL) targets at TRIUMF, an optical technique is being developed which allows for direct off-line and on-line temperature measurements of targets for radioactive isotope production. In this set-up the light coming from a hot target through the ionizer opening is collected via a set of optics in a spectrometer. Thus, from...
FIPPS (FIssion Product Prompt gamma-ray Spectrometer) is a new instrument of ILL for the gamma-ray spectroscopy of nuclei produced by thermal neutron induced reactions. In the current stage, FIPPS consists of an array of 8 HPGe clover detectors and a pencil-like intense thermal neutron beam.
The next phase of FIPPS aims to study i) Nuclear structure of neutron-rich nuclei far from stability...
TRIUMF is enhancing its rare isotope production capabilities by creating a new scientific infrastructure known as the Advanced Rare IsotopE Laboratory (ARIEL). A critical part of this expansion is the CANadian Rare-isotope facility with Electron-Beam ion source (CANREB) project which combines a high-resolution separator, a gas-filled radiofrequency quadrupole (RFQ) cooler and buncher, a pulsed...
The design of high-power targets for production of Radioactive Ion Beams (RIBs) at an Isotope Separation On-Line (ISOL) facility requires a full overview of the physical processes occurring in the target: nuclear reactions, thermal effects, isotope diffusion and effusion. Such high-power targets are nowadays a requisite as they constitute one of the means to significantly increase the yields...
A wide variety of RI beams can be produced from the $^{238}$U primary beam with 345 MeV/u at RIBF. The RI beam production of heavy isotope, especially Z > 82, becomes complicate and difficult, because the charge state can change in any beam-line materials at this energy. The RI beam separation in the fragment separator is affected not only by Z and A, but also by the charge state in the...
Collinear laser spectroscopy is a powerful tool for the study of fundamental properties of exotic nuclei via the measurement of the hyperfine structure and isotope shift of electronic transitions. This technique has been in use at the IGISOL facility, University of Jyväskylä, for over 20 years [1]. During this time, spectroscopic studies where primarily focused on singly-charged ions and laser...
The FRS Ion Catcher experiment at GSI enables precision experiments with projectile and fission fragments. The fragments are produced at relativistic energies in the target at the entrance of the fragment separator FRS, spatially separated and energy-bunched in the FRS, slowed-down and thermalized in a cryogenic stopping cell (CSC). A versatile RFQ beamline and diagnostics unit and a...
β-decay spectroscopy is a useful method for understanding physics of nuclear structure. In decay spectroscopy experiments, Double-Sided Silicon Strip Detectors (DSSSDs) have often been used because of their detection capability on ions and β-rays. In order to identify β-ray events in the DSSSDs, it is necessary to correlate a β-ray and a corresponding, implanted ion using time and position...
The study of the nuclear structure and exotic decay property of neutron-rich isotopes is nowadays an important subject in nuclear physics research. To date, by using nuclear fusion-evaporation reaction, projectile fragmentation, proton (neutron)-induced fission, and spontaneous fission, we can only produce neutron-rich isotopes with a small charge number Z. For significantly more neutron-rich...
Terbium has 4 interesting isotopes for usage in the context of nuclear medicine: $^{149}$Tb, $^{152}$Tb, $^{155}$Tb and $^{161}$Tb, sometimes referred to as the Swiss army knife of nuclear medicine [1]. Their chemical identity means that radiopharmaceuticals for imaging and therapy respectively will have identical pharmacokinetics and pharmacodynamics, an important advantage for so-called...
At the Super-FRS, the new in-flight separator under construction at FAIR [1] many beam instrumentation devices like detector drives, degrader and slit systems, etc. have to be implemented. These devices are installed as insertions in the diagnostic vacuum chambers at the various focal planes of Super-FRS. The insertions have to be remote handled due to the highly activated environment by means...
Laser spectroscopy is a powerful and versatile technique for the study of nuclear ground-state properties [1]. The precision with which these nuclear properties can be extracted from the isotopic shifts and hyperfine structure of optical transitions is defined by the observable spectral line width. The latter depends on different line broadening mechanisms existing due to the conditions of the...
The Modular Total Absorption Spectrometer (MTAS) has been used in Oak Ridge since 2012. It consists of 18 NaI(Tl) hexagonal modules. Each of the 18 modules is 21" long and 6.93" wide (side-to-side). There is also one central module of the same length and cross section, but with a 2.5" hole drilled through. The crystals are arranged in a honeycomb like structure. Radioactive samples, to be...
The $\gamma$-ray detector CATANA (Caesium iodide Array for $\gamma$-ray Transitions in Atomic Nuclei at high isospin Asymmetry) is designed to detect inflight $\gamma$-rays from fast RI beams of RIBF at RIKEN Nishina Center. CATANA consists of 200 square frustum-shaped CsI(Na) crystals coupled with the photomultiplier tubes. Total active weight of the scintillator material is 270 kg. The...
Abstract
Radionuclides are extensively used in the medical field both for diagnostic (tracer) and therapeutic purposes. The requirements concerning half-life vary from a few seconds to a few days, and the desired radiation properties range from simple low-energy gamma emitters and positron emitters for diagnostic purposes to beta, auger electron and alpha emitters for therapy.
Industrial use...
Resonant Schottky pick-up cavities are sensitive beam monitors. They are indispensable
for the beam diagnostics in storage rings. Apart from their applications in the
measurements of beam parameters, they can be used in non-destructive in-ring decay
studies of radioactive ion beams [1]. In addition, position sensitive Schottky pick-up
cavities enhance precision in the isochronous mass...
Terbium has a quadruplet of so-called theranostic isotopes useful for the preparation of radiopharmaceuticals: 152Tb (PET imaging), 155Tb (SPECT imaging), 161Tb (beta- therapy) and 149Tb (alpha therapy). All isotopes belong to the same element, thus assuring identical pharmacokinetics, an essential requirement for theranostics. 149,152,155Tb with high radioisotopic purity is so far only...
The region around doubly magic isotopes, such as 100Sn and 132Sn, has attracted a large interest in nuclear structure and physics studies, and for which intense and high quality beams are still required, as documented in the Long Range Plan published by NuPECC [1]. While 132Sn beams and beyond have been available at ISOL facilities for many years at low energy and as post-accelerated beams,...
The Multi Reflection Time-of-Flight Mass Spectrometer (MR-ToF MS) of ISOLTRAP has been used successfully for several years for precision mass measurements and ion purification. Nevertheless, further improvements are still possible concerning, e.g. the ion optics, beam preparation and stability of the system. All these issues were addressed in a series of systematic studies reported here. ...
Over the last few decades, advances in radioactive beam facilities like the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) have made short-lived, rare-isotope beams available for study in various science areas, and new facilities, like the Facility for Rare Isotope Beams (FRIB) under construction at MSU, will provide...
In the framework of the research and development activities of the SPES project,and regarding the optimization of the radioactive beam production the Hollow Cathode Lamp Spectroscopic technique, is nowadays a solid based application to study resonant laser ionization.
By means of this instrument, it is possible to test resonant laser ionization processes of stable species, and in this work,...
The Advanced Rare IsotopE Laboratory (ARIEL) is under construction at TRIUMF. ARIEL will add an additional two ISOL target stations, one will accept a 100 kW electron driver beam the other a 50 kW proton beam. These target stations are in addition to the two that are currently operated at TRIUMF’s ISAC facility. Once ARIEL is fully operational an estimated 9000 Radioactive Ion Beam hours will...
The Beijing Radioactive ion beam facility Isotope Separator On-Line(BRISOL, is a radioactive ion beam facility based on a 100MeV cyclotron providing a 100μA proton beam bombarding the thick target to produce radioactive nuclei, which produces singly charged ions using an ion source. A new FEBIAD ion source has been developed to fulfil the requirements of the BRISOL for producing radioactive...
With the aim of increasing the primary beam intensity in the next generation of Radioactive Ion Beam facilities, a major challenge is the production of targets capable of dissipating the high deposited beam power. In that context, LIEBE is a high-power target dedicated to the production of short-lived isotopes.
The design consists of a loop of molten lead-bismuth eutectic, in which the...
Rare isotopes are produced at the NSCL by projectile fragmentation at energies of ~100 MeV/u. The NSCL has successfully used linear gas stopping cells for more than a decade to thermalize projectile fragments and extract them at 10's of keV energies; first for experiments at low energy and later for reacceleration to Coulomb barrier energies. In order to stop and rapidly extract light and...
The RIKEN RI Beam Factory (RIBF) cyclotrons can accelerate very heavy ions up to 345 MeV/nucleon, such as uranium. The goal beam intensity is as high as 1 pμA (6.2 $\times$ 10$^{12}$ particles/s), which corresponds to a beam power of 82 kW in the case of $^{238}$U. An important aspect in increasing beam intensity is to limit the maximal temperature due to the beam energy loss in the...
Atomic masses are key tools to understand the nature of nuclear forces and structure, fundamental symmetries and astrophysical processes if known with sufficient precision. With the availability of beams of increasingly exotic species, mass spectroscopy techniques have become more challenging. They need to be faster for shorter lifetimes, more sensitive for lower intensities, and sufficiently...
A new high-sensitivity time-of-flight detector has been designed and installed in the Isolde beamline, permitting study of the time structure of the on-line beam for the first time. The detector uses secondary electron emission and an MCP read-out to create a robust but highly-sensitive detector with a response time of 0.5 ns.
The detector is 10 m downstream of the RFQ extraction point,...
As it is well known isochronous periodic structures (electric or magnetic) are used for mass measurements either as Time of Flight (TOF) mass analysers (MA) or Fast Fourier Transform (FFT) mass analysers with image charge detection. In this study we demonstrate that both the operational modes can be implemented in a single and compact hybrid mass analyser. Such an instrument can be run in one...
A radio frequency quadrupole (RFQ) linear accelerator has been developed and tuned for the heavy ion accelerator facility at RISP (Rare Isotope Science Project). The RISP RFQ has the 81.25 MHz operational frequency and a four-vane structure for a continuous wave (CW) operation despite the fabrication difficulties of the huge cavity due to the brazing technology. The cavity is inherently...
In recent years α-, β- and γ- spectroscopy of heavy nuclei at the focal plane of recoil separators (“decay spectroscopy”) has been very intensively developed. The mixing of α decay with γ and β decay spectroscopy allows to investigate single particle states behavior as well as the structure of little known elements in the Z = 100-104 and N = 152-162 region.
In the past using the GABRIELA...