Conveners
Session 10 - Laser techniques
- Block Michael (GSI)
Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. In such measurements, however, it is difficult to combine a high efficiency with a high spectral resolution. A significant improvement in the spectral resolution...
Laser spectroscopy of exotic isotopes requires a technique that combines high spectral resolution with high efficiency. At the Collinear Resonance Ionization Spectroscopy (CRIS) ISOLDE [1], significant effort has been invested in improving both aspects. These developments resulted in e.g. linewidths of 20 MHz in radioactive Francium [2], and in the successful high-resolution measurements on...
Laser spectroscopy is a versatile tool to unveil fundamental atomic properties of an element and information on the atomic nucleus. The heaviest elements are of particular interest as their electron shell is strongly influenced by electron-electron correlations and relativistic effects changing the electron configuration and thus, the chemical behavior [1,2]. The elements beyond fermium...
Laser spectroscopy is a powerful tool for studying nuclear ground-state properties in a model-independent way. It provides access to the charge radii and electromagnetic moments of the nuclear ground state as well as of isomers by observing the isotope shifts and hyperfine structures of the atoms’ spectral lines [1, 2]. While in-source laser spectroscopy in a hot cavity is a very sensitive...
Collinear laser spectroscopy is an established tool for the study of electromagnetic moments, charge radii and nuclear spins. With a history that now spans 4 decades, the technique has been successfully applied in laboratories all over the world. Recently, several upgrades were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility, Jyväskylä. Chief among these upgrades are a...
The ISOLDE on-line mass separator facility at CERN has offered radiogenic beams of a multitude of elements for over 50 years [1]. Fundamental research on nuclear structure, masses and decay modes are carried out by the various experimental installations inside the hall. To complement these, several measurement campaigns throughout the past years have been conducted by the in-source laser...