Conveners
Session 12 - Ion guide, gas catcher, and beam manipulation techniques
- Piet Van Duppen (KU Leuven (BE))
Heavy-ion fragmentation facilities provide a wide range of rare isotope beams of most chemical elements, as the in-flight production is fast and chemistry independent. Rare isotopes are delivered at half the speed of light are used for a wide set of nuclear science experiments. In order to leverage the advantages of the production mechanism for experiments that require lower energies and...
A new facililty, the N=126 factory, is currently under construction at Argonne National Laboratory. It will use multi-nucleon transfer reactions to create neutron-rich isotopes of the heaviest elements for studies of interest to the formation of the last abundance peak in the r-process. This region of the nuclear chart is difficult to access by standard fragmentation or spallation reactions...
An RF-only ion funnel has been developed to efficiently extract single Ba ions from a high-pressure (10 bar) xenon gas into vacuum. Gas is injected into the funnel where ions are radially confined by an RF field while the neutral gas escapes. Residual gas flow alone (without any DC drag potential) transports the ions longitudinally through the funnel. In the downstream chamber the ions are...
Thermalization of projectile fragment beams provides access to a wide range of low-energy rare isotope beams at projectile fragmentation facilities. The thermalization process includes slowing down the fast exotic beams in solid degraders combined with momentum compression and removal of the remaining kinetic energy by collision with helium buffer gas. The second-generation National...
The production of actinide ion beams has become a focus of recent efforts at the IGISOL facility of the Accelerator Laboratory, University of Jyväskylä, aimed at the measurement of nuclear properties of heavy elements using high-resolution optical spectroscopy [1]. Recently, off-line ion beam production of plutonium and thorium using laser resonance ionization combined with filament dispensers...
Linear gas stoppers filled with helium have become a common tool to convert high energy rare isotope beams into low-energy beams. The National Superconducting Cyclotron Laboratory (NSCL) has designed and fabricated a new cryogenic gas stopper to maximize efficiency and beam rate capability in order to increase scientific reach at the facility. Compared to earlier designs, the Advanced...