Physics Beyond Colliders Annual Workshop

Europe/Zurich
500-1-001 - Main Auditorium (CERN)

500-1-001 - Main Auditorium

CERN

400
Show room on map
Claude Vallee (Centre de Physique des Particules de Marseille) , Joerg Jaeckel (ITP Heidelberg) , Mike Lamont (CERN)
Description

The aim of the Physics Beyond Colliders study group is to explore the opportunities offered by the CERN accelerator complex and infrastructure to gain new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments.

This follow-up workshop is intended to review the status of the projects proposed at the kick-off workshop of September 2016, and to stimulate further new ideas for which we encourage the submission of abstracts.

The workshop will be webcast.

Organizing Committee: Joerg Jaeckel, Mike Lamont, Connie Potter, Claude Vallée

Videoconference Rooms
Physics_Beyond_Colliders_Annual_Workshop
Name
Physics_Beyond_Colliders_Annual_Workshop
Description
PBC2017
Extension
10644287
Owner
Connie Potter
Auto-join URL
Useful links
Phone numbers
Registration
Registration form
Participants
  • Aaron James Armbruster
  • Achille STOCCHI
  • Adam Wlodzimierz Jacholkowski
  • Akitaka Ariga
  • Alain MAGNON
  • Alexander Vodopyanov
  • Alexandre Rozanov
  • alexandre zaitsev
  • Alexeii Kurepin
  • Alexey Boyarsky
  • Amartya Sengupta
  • Amir Hadi Ziaie
  • Andrea Dainese
  • Andrea Giammanco
  • Andrea Merli
  • Andrea Moretti
  • Andrey Golutvin
  • Anna Martin
  • Antonio Principe
  • Antonio Uras
  • Archana Sharma
  • Ashwini Sathnur
  • Augusto Ceccucci
  • Axel Lindner
  • Babette Dobrich
  • Bakur Parsamyan
  • Balint Radics
  • Bernard Peyaud
  • Brigitte Bloch-Devaux
  • Carlo Carloni Calame
  • Caroline Kathrin Riedl
  • Chris Quigg
  • Christian Carli
  • Christian Fabjan
  • Christoph Hessler
  • Christoph Rembser
  • Clara Matteuzzi
  • Claude Vallee
  • Clement Helsens
  • Daniel Johnson
  • Daniele Mirarchi
  • daniele panzieri
  • Daniil Sukhonos
  • David Nonso Ojika
  • Diego Blas Temino
  • Dimitri Delikaris
  • Edda Gschwendtner
  • Eduardo Rodrigues
  • Eirini Koukovini- Platia
  • Elena Graverini
  • Enrico Bagli
  • Eric Thomas
  • eric van herwijnen
  • Evgueni Goudzovski
  • Fabrice Gautheron
  • Ferdinand Hahn
  • Fernando Martinez Vidal
  • Flavio COSTANTINI
  • Francesca Galluccio
  • Franco Bradamante
  • Francois Vannucci
  • Frederic Teubert
  • Fujio Takeutchi
  • Fulvio Piccinini
  • Fulvio Tessarotto
  • Gaia Lanfranchi
  • Gerard Tranquille
  • Gerhard Mallot
  • Giacomo Graziani
  • Giampiero Mancinelli
  • Gianluca Cavoto
  • Giovanni Abbiendi
  • Giovanni Cantatore
  • Giovanni Franzoni
  • Graziano Venanzoni
  • Greta Guidoboni
  • Grigory Pivovarov
  • Guido Zavattini
  • Gunar Schnell
  • Hannes Bartosik
  • Henric Wilkens
  • Herman Ten Kate
  • I T
  • Igor Garcia Irastorza
  • Irina Shreyber
  • Isabella Masina
  • Jacques Chauveau
  • Jaime Ruz Armendariz
  • Jan Henryk Kalinowski
  • Jan M. Pawlowski
  • Jan Rak
  • Jean-Pierre Delahaye
  • Jennifer Kathryn Roloff
  • Jesse Liu
  • Jiajing Mao
  • Joan Mauricio Ferre
  • Joan Ruiz Vidal
  • Joerg Jaeckel
  • Joern Schaffran
  • Johannes Bernhard
  • Johannes Nadenau
  • Juerg Schacher
  • Karim Massri
  • Kirch Klaus
  • Klaus Jungmann
  • Konstantinos Vellidis
  • Lau Gatignon
  • Laura Bandiera
  • Laure Marie Massacrier
  • Leonid Nemenov
  • Livio Mapelli
  • Ludovico Tortora
  • Maarten Van Dijk
  • Manfred Krammer
  • Marcel Rosenthal
  • Marco Calviani
  • Marco Dallavalle
  • Marco Garattini
  • Marco Nardecchia
  • Maria Fiascaris
  • Maria Vasileiou
  • Marina Krstic Marinkovic
  • Mario Campanelli
  • Mario MACRI
  • Marketa Peskova
  • Markus Brugger
  • Markus Diehl
  • Markus Elsing
  • Masaya Ishino
  • Massimiliano Ferro-Luzzi
  • Massimo Alacevich
  • Massimo Passera
  • Matt LeBlanc
  • Matthew Wing
  • Matthieu Valette
  • Maurizio Bonesini
  • Michael Pesek
  • Michael Wilkinson
  • Mieczyslaw Krasny
  • Mohammed Mohisin Khan
  • Monica Pepe
  • Nadia Pastrone
  • Nicola Neri
  • Nikolay Kurepin
  • Oleg Denisov
  • Oleksiy FOMIN
  • Oliver Lantwin
  • olivier brunner
  • Owusu Osei Kwabena
  • Ozgur Etisken
  • Panos Zisopoulos
  • Paolo Crivelli
  • Paolo Martinengo
  • Paolo Spagnolo
  • Pasquale Di Nezza
  • Patric Muggli
  • Patrick Czodrowski
  • Philippe Mermod
  • Pierre Pugnat
  • Ramni Gupta
  • Reyes Alemany Fernandez
  • Richard Jacobsson
  • Roberta Volpe
  • Roberto Carosi
  • Roberto Rossi
  • Roberto Tenchini
  • Roger Forty
  • Rupert Leitner
  • Ruth Pottgen
  • Sandra Malvezzi
  • Sergei Gninenko
  • Sergey Troitsky
  • SEYEDSHAMS SAJADIKALJAHI
  • Sijin Qian
  • Silvia Dalla Torre
  • Silvia Martellotti
  • Simon Marsh
  • Simone Gilardoni
  • Simone Montesano
  • Stefano Levorato
  • Stefano Redaelli
  • Steffen Doebert
  • Stepan Kunc
  • Stephane Platchkov
  • Suneel Dutt
  • Teppei Katori
  • Thijs Wijnands
  • Thomas Ruf
  • Tien-Tien Yu
  • Tommaso Dorigo
  • Torsten Akesson
  • Ugo Gastaldi
  • Umberto Marconi
  • Valery Lyubovitsky
  • Varvara Batozskaya
  • Vasilis Vlachodimitropoulos
  • Victor Kim
  • Vincent Andrieux
  • Virginia Greco
  • Waleed Esmail
  • walter scandale
  • Walter Wuensch
  • Wolfgang Funk
  • Yacine Kadi
  • Yann Dutheil
  • Yannis Papaphilippou
  • Yannis Semertzidis
  • Tuesday, 21 November
    • 08:30 09:00
      Introduction 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
      • 08:30
        Introduction 20m
        Speaker: Claude Vallee (Centre de Physique des Particules de Marseille)
    • 09:00 09:30
      Exploring Hidden Sector Physics with an electron beam facility 30m 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
      Speaker: Philip Schuster (Perimeter Institute for Theoretical Physics)
    • 09:30 12:50
      BSM 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
      • 09:30
        Overview of the BSM landscape 30m

        Where we stand, possibilities, comparative reach

        Speaker: Joerg Jaeckel (ITP Heidelberg)
      • 10:00
        SHiP 20m
        Speaker: Richard Jacobsson (CERN)
      • 10:20
        NA62++ 20m
        Speaker: Tommaso Spadaro (INFN e Laboratori Nazionali di Frascati (IT))
      • 10:40
        Coffee 30m
      • 11:10
        KLEVER 20m
        Speaker: Cristina Lazzeroni (University of Birmingham (GB))
      • 11:30
        NA64++ 20m
        Speaker: Sergei Gninenko (Russian Academy of Sciences (RU))
      • 11:50
        LSW 20m
        Speaker: Axel Lindner (DESY)
      • 12:10
        EDM 20m
        Speaker: Yannis Semertzidis (CAPP/IBS and KAIST in South Korea)
      • 12:30
        IAXO 20m
        Speaker: Igor Garcia Irastorza (Universidad de Zaragoza (ES))
    • 14:00 17:45
      QCD 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
      • 14:00
        Overview of the QCD landscape 30m

        Landscape, where we stand, possibilities, comparative reach

        Speakers: Gunar Schnell , Jan M. Pawlowski (University of Heidelberg) , Markus Diehl
      • 14:30
        LHCb fixed target - SMOG 15m
        Speaker: Giacomo Graziani (INFN, Sezione di Firenze (IT))
      • 14:45
        Polarized fixed target at LHC 15m
        Speaker: Pasquale Di Nezza (INFN e Laboratori Nazionali di Frascati (IT))
      • 15:00
        ALICE fixed target 15m
        Speaker: Laure Marie Massacrier (Université Paris-Saclay (FR))
      • 15:15
        AFTER 15m
        Speaker: Jean-Philippe Lansberg (IPN Orsay, Paris Sud U. / IN2P3-CNRS)
      • 15:30
        Coffee 30m
      • 16:00
        Crystal based experiments 15m
        Speaker: Achille Stocchi (Universite de Paris-Sud 11 (FR))
      • 16:15
        NA60++ 15m
        Speaker: Gianluca Usai (Universita e INFN, Cagliari (IT))
      • 16:30
        NA61++ 15m
        Speaker: Marek Gazdzicki (Johann-Wolfgang-Goethe Univ. (DE))
      • 16:45
        DIRAC++ 15m
        Speaker: Leonid Nemenov (Joint Institute for Nuclear Research (RU))
      • 17:00
        MUonE 15m
        Speaker: Graziano Venanzoni (INFN e Laboratori Nazionali di Frascati (IT))
      • 17:15
        COMPASS 15m
        Speaker: Oleg Denisov (INFN, sezione di Torino)
    • 18:00 19:00
      Drink - Resturant 1 - main building 1h 500

      500

      CERN

  • Wednesday, 22 November
    • 09:00 12:30
      Accelerator 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
      • 09:00
        Accelerator side: introduction 15m
        Speaker: Mike Lamont (CERN)
      • 09:15
        Complex performance post LIU 15m
        Speaker: Eirini Koukovini Platia (CERN)
      • 09:30
        Conventional beams 20m
        Speaker: Lau Gatignon (CERN)
      • 09:50
        Gamma factory 20m
        Speaker: Mieczyslaw Krasny (Centre National de la Recherche Scientifique (FR))
      • 10:10
        EDM 20m
        Speaker: Jorg Pretz (Rheinisch Westfaelische Tech. Hoch. (DE))
      • 10:30
        Coffee 30m
      • 11:00
        Beam Dump Facility 20m
        Speaker: Mike Lamont (CERN)
      • 11:20
        LHC fixed target 20m
        Speaker: Massimiliano Ferro-Luzzi (CERN)
      • 11:40
        AWAKE++ 15m
        Speakers: Edda Gschwendtner (CERN) , Matthew Wing (University College London)
      • 11:55
        nuSTORM 15m
        Speaker: Kenneth Richard Long (Imperial College (GB))
      • 12:10
        Technology 20m
        Speaker: Andrzej Siemko (CERN)
    • 14:00 15:30
      New ideas: Abstracts received 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
      • 14:00
        Light Dark Matter Searches with Carbon Nanotubes 15m

        Directional detection of Dark Matter particles in the MeV mass range could be accomplished by studying electron recoils in large arrays of parallel carbon nanotubes. In a scattering process with a lattice electron, a DM particle might transfer sufficient energy to eject it from the nanotube surface. An external electric field is added to drive the electron towards the open ends of the array, where it is eventually detected. The anisotropic response of this detection scheme, as a function of the orientation of the target with respect to the DM wind, is calculated, and it is concluded that no direct measurement of the electron ejection angle is needed to explore significant regions of the light DM exclusion plot. A standard compact photomultiplier, in which the photocathode element is substituted with a dense array of parallel carbon nanotubes, could serve as the basic detection unit. For DM particles in the GeV mass range, ion channeling phenomena in carbon nanotubes can be exploited.

        Speaker: Antonio Polosa (Sapienza Universita` di Roma)
      • 14:15
        A new experiment for axion-like particle search 15m

        In Particle Physics, axions appear in very well motivated extensions of the Standard Model including the Peccei-Quinn mechanism proposed to solve the long-standing strong-CP problem. Together with the weakly interacting massive particles of supersymmetric theories, axions are also a favored candidate for resolving the Dark Matter issue.
        I propose a new detection scheme for the search of axion-like particles based on a Light-Shining- Through-Wall (LSW) experiment in a photon frequency domain never explored before, at very low energy and with extremely intense photon sources.
        The aim of the project is the design of a different and innovative experiment, based on the implementation of a new single-photon detector working in the sub-THz region, and exploiting nano-technology devices at energy and temperature ranges never used in Particle Physics before.
        The ultimate goal is to answer one of the most pressing questions in Particle Physics with an unusual approach, based on state-of-the-art, and beyond, nano- and quantum-technology: using leading edge nano- tech detectors to investigate fundamental issues of Particle Physics.
        With radiation sources below the THz, thanks to the use of high luminosity klystrons or gyrations, present laboratory exclusion limits on axion-like particles might be improved by few orders of magnitude.The underlying idea of this proposal has been recently published in a paper in the Physics of the Dark Universe journal (see pays. Dark Univ. 12, 37 (2016) for details).

        Speaker: Paolo Spagnolo (INFN Sezione di Pisa, Universita' e Scuola Normale Superiore, P)
      • 14:30
        Measuring vacuum magnetic birefringence with static high-field superconducting magnets 15m

        For many years the PVLAS collaboration has been working on trying to measure vacuum magnetic birefringence using optical techniques. That electrodynamics in vacuum is non-linear was predicted in 1935 [H. Euler and B. Kockel, Naturwiss, 23, 246 (1935)] and the first experimental proposal to detect the leading nonlinear effect, namely vacuum magnetic birefringence closely related to light-by-light elastic scattering, dates back to the early eighties at CERN following an idea by E. Iacopini and E. Zavattini [Phys. Lett. B, 85, 151 (1979)]. A lot of progress has been made since but the goal still needs to be reached. Recently Turolla et al. [Monthly Notices of the Royal Astronomical Society, Volume 465, Issue 1, 11 February 2017, Pages 492–500] have indirectly inferred evidence of vacuum magnetic birefringence from the observation of a neutron star and ATLAS has directly observed $\gamma-\gamma$ interactions at high energies [Nature Physics 13, 852–858 (2017)]. A direct observation at low energies is still lacking.

        At present the PVLAS collaboration has reached an experimental value for the relevant parameter $\frac{\Delta n}{3B^2}$ to be compared with $A_e$ describing the non linear behaviour of electrodynamics in vacuum of $\frac{\Delta n^{\rm (PVLAS)}}{3B^2} = (6 \pm 9) \times 10^{-24}$ T$^{-2}$ to be compared with the theoretical predicted value of $A_e = 1.32\times 10^{-24}$ T$^{-2}$. Although the measured value is approaching the goal it was obtained with an integration of $5\times 10^6$ s and is at present limited by wideband noise and not systematic effects. Further integration does not seem to be the best approach.

        The sensitivity of the PVLAS apparatus is far from being shot-noise limited with a wideband contribution which still needs to be understood and is under investigation. Past and present experiments using the same, or a similar, approach also suffer from a similar problem. As can be seen in the attached figure the birefringence noise of our and other experiments seems to lay on a power curve and diminishes with frequency.

        So the two main ingredients are for an experiment aiming at measuring directly vacuum magnetic birefringence using light are: high modulation frequency of the signal and a high value for the integral $\int{B^2 dl}$. Typical values today are $\int{B^2 dl}\approx 10-20$ T$^{2}$m at frequencies of the order of tens of Hertz.

        Very high values of $\int{B^2 dl}\approx 1000 - 5000$ T$^{2}$m can be obtained with accelerator superconducting magnets like the HERA magnets and the ones in LHC. The problem is to modulate the effect at a reasonably high frequency. In the past, rotating the polarisation of the light entering the polarimeter has been proposed by OSQAR but difficulties have been encountered, e.g. mirror birefringence. A new possible technique, published in 2016 [Eur. Phys. J. C (2016) 76:294] and still to be tested, proposes the insertion of two synchronously rotating half-wave plates inside the Fabry-Perot cavity (with therefore a relatively low finesse of $\approx 10^3$) each one on either side of the magnetic field so as to have a rotating polarisation $only$ in the static magnetic field but $not$ on the mirrors of the cavity.

        This idea, with its possible drawbacks, will be presented thinking on the lines of using an LHC magnet at CERN.
        [Experimental birefringence sensitivities of experiments designed to measure vacuum magnetic birefringence. The continuous line is a fit resulting in a power law $S_{\Delta n}=f^k$ with $k=-0.78$]. 1

        Speaker: Guido Zavattini (Università di Ferrara)
      • 14:45
        Precision measurements in nuclear beta decay at ISOLDE 25m
        Speakers: Martin Gonzalez-Alonso (CERN) , Stephan Malbrunot (CERN)
      • 15:10
        Search for new physics via EDM of heavy and strange baryons at the LHC 20m
        Speaker: Fernando Martinez Vidal (IFIC - University of Valencia and CSIC (ES))
    • 15:30 16:00
      Coffee 30m 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
    • 16:00 17:30
      New ideas II: Other new ideas 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
      • 16:00
        Probing QED in the strong-field limit with the XFEL at DESY 20m
        Speaker: Matthew Wing (University College London)
      • 16:20
        A possible implementation of an electron beam facility at CERN 20m
        Speaker: Steinar Stapnes (CERN)
      • 16:40
        REDTOP: Rare Eta Decays with a TPC for Optical Photons 15m
        Speaker: Roberto Carosi
    • 17:30 17:45
      Closeout 500-1-001 - Main Auditorium

      500-1-001 - Main Auditorium

      CERN

      400
      Show room on map
Your browser is out of date!

Update your browser to view this website correctly. Update my browser now

×