1–5 Jul 2019
Faculty of Physics, University of Warsaw
Europe/Warsaw timezone

Einstein-Gauss-Bonnet gravity in four space-time dimensions

2 Jul 2019, 15:15
20m
Faculty of Physics, University of Warsaw

Faculty of Physics, University of Warsaw

conference hall 0.03, Faculty of Physics, University of Warsaw ul. Pasteura 5, 02-093 Warszawa Poland

Speaker

Dr Drazen Glavan

Description

Lovelock's theorem asserts that the most general theory of gravity in D=4 space-time dimensions is given by the action containing the Einstein-Hilbert term and a cosmological constant. Already in D=5 an additional term is possible - the Gauss-Bonnet action - which in D=4 turns into a total derivative not contributing to dynamics. In general, the contribution of the Gauss-Bonnet action to Einstein equation is proportional to (D-4). Here I will present an idea of multiplying the Gauss-Bonnet action by 1/(D-4) and defining the four-dimensional case as a smooth D->4 limit of the Einstein equation. Thus defined the theory propagates only the graviton and it satisfies the criteria of Lovelock's theorem, but bypasses its results. This theory has several novel predictions, including the corrections to the dispersion relation of cosmological tensor and scalar modes and singularity resolution for spherically symmetric solutions.

Presentation materials

There are no materials yet.