A Comprehensive Study of Bottomonium Production in Heavy-ion Collision

4 Nov 2019, 17:40
20m
Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Poster Presentation Heavy flavor and quarkonium Poster Session

Speaker

Mr Nikhil Hatwar (Birla Institute of Technology and Sciences, Pilani campus)

Description

One of the important goals of heavy-ion collision experiments is to test the predictions of Quantum Chromodynamics(QCD). One such QCD prediction is the formation of Quark-Gluon Plasma(QGP) in the heavy-ion collision experiments. Quarkonia suppression has been suggested as a sign of formation of QGP in heavy ion collision, where it could exist as a transient state. We have developed a model to predict the suppression of quarkonia in QGP. It incorporates quarkonia production and suppression due to hot nuclear matter effects like color screening, collisional damping, gluonic dissociation and cold nuclear matter effect namely, nuclear shadowing. We have considered the possibility of regeneration of quarkonia due to correlated/uncorrelated quark and anti-quark pair in QGP medium. Since our model had employed Bjorken's (1+1)-dimensional hydrodynamics, we were restricted to predict suppression at mid-rapidity only. A complete rapidity dependence of suppression was also missing in our previous work. Both of these shortcomings are taken care by switching to (3+1)-dimensional relativistic hydrodynamics using MUSIC, a C++ code. MUSIC uses Kurganov-Tadmor algorithm to solve hydrodynamic conservation equations. In the present work, we compare the bottomonium suppression calculated by using our current (3+1)-dimensional expansion based model with the experimentally measured suppression, $R_{AA}$ as a function of centrality, transverse momentum, and rapidity.

Authors

Mr Nikhil Hatwar (Birla Institute of Technology and Sciences, Pilani campus) Mr CAPTAIN RITURAJ SINGH (BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE) Madhukar Mishra (Birla Institute of Technology and Science Pilani, Pilani Campus)

Presentation materials

There are no materials yet.