Collision energy dependence of the freeze-out in nuclear collisions at RHIC BES and the LHC

4 Nov 2019, 17:40
20m
Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Poster Presentation Collective dynamics and final state interaction Poster Session

Speaker

Boris Tomasik (Univerzita Mateja Bela (SK))

Description

We reconstruct the freeze-out state of the fireball produced in central Au+Au or Pb+Pb collisions in the energy range from 7.7 GeV up to 2760 GeV per colliding nucleon pair. The data stem from the RHIC beam energy scan programme and from the LHC. Transverse momentum spectra of protons, antiprotons, charged pions and kaons have been fitted. Blast-wave model is used. Resonance decays are fully taken into account and the fitting procedure uses Bayesian method with Gaussian process emulator. It is assumed that the fireball freezes-out chemically at chemical freeze-out temperature and then evolves in partial chemical equilibrium. We present how different resonance decays contribute to the spectrum at different energies. The freeze-out temperature decreases with increasing collision energy, while the transverse expansion velocity grows. The decrease of the freeze-out temperature seems to stop at the collision energy of 130 GeV; afterwards the temperature stays constant or grows slightly.

Primary authors

Boris Tomasik (Univerzita Mateja Bela (SK)) Ivan Melo (University of Zilina (SK))

Presentation Materials