Speaker
Description
Jets are collimated bunches of hadrons produced from fragmentation and hadronization of hard scattered partons (quarks and gluons) in high energy collisions. Due to the different color charges of quarks and gluons, differences in the fragmentation of the two types of partons are expected. Therefore jets originated from primary quarks and gluons, are predicted to have different properties. Experimental measurements of inclusive jets have contributions from both types of partons. The partonic fraction in the inclusive jets is expected to be reflected in their properties. The gluonic contribution increases with increasing $\sqrt{s}$ due to an increase in gluon density inside the hadron. The gluonic contribution is argued to vary with event multiplicity as well. Jet properties are therefore expected to depend on $\sqrt{s}$ and event multiplicity. In this work, we will present a detailed study to estimate the change in the inclusive jet properties as a function of $\sqrt{s}$ and event multiplicity for pp collisions using Monte Carlo simulations at LHC energies.