Measurement of non-flow influence on the CMW-sensitive slope parameter from STAR

4 Nov 2019, 17:40
20m
Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Poster Presentation Chirality, vorticity and spin polarization Poster Session

Speaker

Fuqiang Wang (Purdue University (US))

Description

The charge asymmetry ($A_{\rm ch}$) dependence of the $\pi^{+}$ and $\pi^{-}$ elliptic flow difference, $\Delta v_{2}(A_{\rm ch})\equiv v_{2}^{\pi^{-}}(A_{\rm ch}) - v_{2}^{\pi^{+}}(A_{\rm ch})$, is sensitive to the Chiral Magnetic Wave (CMW). Previous measurements in 200 GeV Au+Au collisions by STAR indicated a positive $\Delta v_{2}(A_{\rm ch})$ slope and, in central and peripheral collisions, a negative triangular flow $\Delta v_{3}(A_{\rm ch})$ slope. Since only backgrounds contribute to the latter, the results disfavor a pure background scenario for the $\Delta v_{2}(A_{\rm ch})$ slope.

We show in this poster, however, that including all charged particles as reference in the Q-cumulant flow method automatically introduces a trivial linear term in $v_{n}(A_{\rm ch})$ if non-flow correlations differ between same-sign and opposite-sign particle pairs. This contributed artificial slopes to the previous $\Delta v_{n} (A_{\rm ch})$ measurements. After eliminating this non-flow artifact, the $\Delta v_{2}(A_{\rm ch})$ and $\Delta v_{3}(A_{\rm ch})$ slopes, normalized by the respective $v_{2}$ and $v_{3}$ magnitudes, are consistent with each other within errors. The present error on the $\Delta v_{3}(A_{\rm ch})$ slope is relatively large: the average normalized $\Delta v_{3}(A_{\rm ch})$ slope in $0-80\%$ centrality is about 2.2$\sigma$ above zero, and that in $20-60\%$ is about 1.5$\sigma$ above zero. The implications of our results in terms of the possible CMW signal and local charge conservation backgrounds are discussed.

Primary author

Fuqiang Wang (Purdue University (US))

Presentation Materials

There are no materials yet.