Multiplicity and rapidity dependence of v2 in small system by using two-particle correlations

4 Nov 2019, 17:40
20m
Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Wanda Han Show Theatre & Wanda Reign Wuhan Hotel

Poster Presentation Small systems Poster Session

Speaker

Qiao Xu (Vanderbilt University (US))

Description

Recent PHENIX measurements indicate that the initial geometry is the cause of the observed positive $v_2$ and $v_3$ in high-multiplicity p+Au, d+Au, and $^3$He+Au collisions at $\sqrt{s_{\rm NN}} = 200$~GeV. These results were obtained using the event-plane method, with the event plane determined in the backward rapidity range and correlated with particles in other sub-events at mid- and forward-rapidity. In this poster, we present the latest PHENIX measurements, in which we employ the two-particle correlation method and investigate the effects of the size of the rapidity gap between particles as well as different non-flow subtraction methods in order to understand possible non-flow contributions to the observed $v_2$. We also extend the measurements of $v_2$ from most-central to peripheral collisions to understand the centrality evolution of $v_2$ in small systems. In this poster, we will present the current analysis status of $v_2$ measurement via the two particle correlation analysis with various subtraction methods in a wide centrality range of p+Au collisions at $\sqrt{s_{\rm NN}} = 200$~GeV.

Primary author

Qiao Xu (Vanderbilt University (US))

Presentation materials