Help us make Indico better by taking this survey! Aidez-nous à améliorer Indico en répondant à ce sondage !

MCnet Machine Learning School

from Monday 22 June 2020 (08:05) to Friday 26 June 2020 (18:00)
Lund University (Zoom)

        : Sessions
    /     : Talks
        : Breaks
22 Jun 2020
23 Jun 2020
24 Jun 2020
25 Jun 2020
26 Jun 2020
AM
09:00 Welcome from the Organisers - Stefan Prestel Malin Sjödahl   (Zoom)
09:05 Historical Perspective - Prof. Carsten Petersson (Lund University)   (Zoom)
09:30 --- Question Break ---
09:35 General introduction - Mattias Ohlsson   (Zoom)
10:00 --- Question Break ---
10:05 General introduction (continued) - Mattias Ohlsson   (Zoom)
10:20 Introduction to Machine Learning - Mattias Ohlsson   (Zoom)
10:35 --- Feedback and coffee ---
10:55 Introduction to Machine Learning (continued) - Mattias Ohlsson   (Zoom)
11:10 The MLP Architecture - Mattias Ohlsson   (Zoom)
11:25 --- Question Break ---
11:30 The MLP Architecture (continued) - Mattias Ohlsson   (Zoom)
09:00 Welcome - The organizers   (Zoom)
09:10 Recurrent neural networks - Mattias Ohlsson   (Zoom)
09:40 --- Question Break ---
09:45 Recurrent neural networks (continued) - Mattias Ohlsson   (Zoom)
10:15 --- Coffee break ---
10:35
Tutorials - Mattias Ohlsson Najmeh Abiri (until 12:00) (Zoom)
09:00 Welcome - The organizers   (Zoom)
09:10 Machine learning for image analysis: Recap + Deep Learning for Video and Audio - Niclas Danielsson   (Zoom)
09:40 --- Question Break ---
09:45 Machine learning for image analysis: Deep Learning in the Industry and Deployment Platforms - Niclas Danielsson   (Zoom)
10:15 --- Feedback and coffee ---
10:35 Machine learning for image analysis: Introduction to Tensorflow 2 - Niclas Danielsson   (Zoom)
11:05 --- Question Break ---
11:15 Machine learning for image analysis: Preparing, training, visualizing. - Niclas Danielsson   (Zoom)
11:45 --- Feedback and coffee ---
09:00 Welcome - The organizers   (Zoom)
09:10 How to GAN LHC events - Anja Butter   (Zoom)
09:40 --- Question Break ---
09:45 How to GAN LHC events (continued) - Anja Butter   (Zoom)
10:15 --- Feedback and coffee ---
10:35 Accelerating HEP theory with ML models - Stefano Carrazza   (Zoom)
11:05 --- Question Break ---
11:10 Accelerating HEP theory with ML models (continued) - Stefano Carrazza   (Zoom)
11:40 --- Feedback and coffee ---
09:00 Welcome - The organizers   (Zoom)
09:10 Can we "machine learn" the Next Standard Model? - Wolfgang Waltenberger   (Zoom)
09:40 --- Question Break ---
09:45 Can we "machine learn" the Next Standard Model? (continued) - Wolfgang Waltenberger   (Zoom)
10:15 --- Feedback and coffee ---
10:35 Towards the autonomous machine learning fueled supply chain. - Malte Tichy   (Zoom)
11:05 --- Question Break ---
11:10 Towards the autonomous machine learning fueled supply chain (continued) - Malte Tichy   (Zoom)
11:40 --- Feedback and coffee ---
PM
12:00 --- Free time ---
13:30 The CNN architecture - Mattias Ohlsson   (Zoom)
14:00 --- Question Break ---
14:05 The CNN architecture (continued) - Mattias Ohlsson   (Zoom)
12:00 --- Free time ---
13:30
Tutorials - Mattias Ohlsson Najmeh Abiri (until 15:00) (Zoom)
15:00 --- Free time ---
17:00 ML in HEP: preliminaries - Ben Nachmann   (Zoom)
17:30 --- Question Break ---
17:35 Deep learning with HEP images - Ben Nachmann   (Zoom)
18:05 --- Question break ---
18:25 Deep learning in HEP beyond images   (Zoom)
12:00 --- Free time ---
13:30
Tutorial and Transfer Learning: Machine Learning for Image Analysis - Niclas Danielsson (until 15:30) (Zoom)
15:30
Free time (until 16:45) (Zoom)
16:45 ML in HEP: Likelihood-free methods for removing distortions - Ben Nachmann   (Zoom)
17:15 --- Break/Free time ---
18:15 ML in HEP: Generative models - Ben Nachmann   (Zoom)
18:45 --- Question break ---
18:50 ML in HEP: Uncertainty quantification and anomaly detection - Ben Nachmann   (Zoom)
12:00 --- Free time ---
13:30
Tutorial - Najmeh Abiri (until 16:30) (Zoom)
12:00 --- Free time ---
13:30 Bayesian deep probabilistic differentiable programming: A scientific approach to AI - Michael Green   (Zoom)
14:00 --- Question Break ---
14:05 Bayesian deep probabilistic differentiable programming: A scientific approach to AI (continued) - Michael Green   (Zoom)
14:35 --- Feedback and coffee ---
14:55 Outlook on ML in HEP - Tilman Plehn   (Zoom)
15:55 Farewell! - The organizers   (Zoom)