18–22 Jul 2022
Europe/Zurich timezone

USING A LIKELIHOOD FIT TO IDENTIFY RADIOACTIVE BACKGROUND COMPONENTS IN THE CRESST EXPERIMENT

19 Jul 2022, 19:00
1h
Poster presentation Poster session

Speaker

Jens Burkhart

Description

Large efforts are being made to directly detect interactions of Dark Matter with ordinary matter, including the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) experiment located at the Labor- atori Nazionali del Gran Sasso (LNGS) in Italy. During the second phase of the experiment, CRESST-II, scin- tillating CaWO4 target crystals were used to detect nuclear recoils. However, at low energies a distinction be- tween Dark Matter recoils and beta-particles/gamma-rays is hardly possible. It is therefore vital to understand the composition of ambient radioactive background in the experimental reference data as it can be used in an analysis that allows to check for possible Dark Matter signals.
Tackling this problem, a first Monte Carlo electromagnetic background model was developed for CRESST-II in a predecessor study, where sources of contamination (radiogenics and cosmogenics) were identified and simu- lated for the detector module named TUM40. The resulting spectral templates were scaled using parametric Gaussian templates that were fitted to obvious peaks in the experimental data. The remaining flat energy spectra, that lack distinct alpha- or photopeaks, were scaled using a steady-state condition known as secular equilibrium.
The techniques presented in this work aim at improving CRESST’s background model by using a more detailed implementation of the experimental geometry, including more components into the model (more cosmogenic nuclides and more detector parts), using a template fitting method based on Bayesian likelihood and the Metrop- olis-Hastings algorithm, and by simultaneously fitting another detector module, called Lise, from the same run.
The results of a fit with 206 free parameters are presented, showing a significant increase of the reproduction in the energy range 1 keV–40 keV from 68% in the predecessor study to over 97% in this work. Finally, an over-
view of the current developments and considerations to improve upon the predecessor model are presented.

Author

Jens Burkhart

Presentation materials