Conveners
Parallel 1B - Further experiments
- Klaus Eitel
Parallel 1B - Further experiments
- Florian Kühnel (Stockholm University)
Dark showers from strongly interacting dark sectors that confine at the GeV scale can give rise to novel signatures at electron-positron colliders. In my talk, I will discuss the sensitivity of B factory experiments to dark showers produced through an effective interaction arising from a heavy off-shell mediator. I will show that a prospective search for displaced vertices at Belle II can...
As a quasi-stable electrically neutral particle which can be copiously produced, neutrons represent an interesting tool (which is comparatively under-explored) with which feeble interactions with a hidden sector particle could be observed. The HIBEAM/NNBAR experiment is planning a series of searches for neutrons in flight converting into sterile neutrons and/or anti-neutrons at the European...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric 0νββ experiment to reach the one-tonne mass scale. The detector, located underground at the Laboratori Nazionali del Gran Sasso in Italy, consists of 988 TeO2 crystals arranged in a compact cylindrical structure of 19 towers, operating at a base temperature of about 10 mK. After beginning its first physics...
With its excellent energy resolution and ultra-low backgrounds, the high-purity germanium detectors in the MAJORANA DEMONSTRATOR enable several searches for beyond the Standard Model physics ranging from the primary neutrinoless double beta decay search to searches for several classes of exotic dark matter models. Many of these dark matter models predict a peaked signature in an energy...
Experiments using proton beams at high luminosity colliders and fixed-target facilities provide impressive sensitivity to new light weakly coupled degrees of freedom. We revisit the production of dark vectors and scalars via proton bremsstrahlung for a range of beam energies, including those relevant for the proposed Forward Physics Facility (FPF) at the High Luminosity LHC. In addition, we...
Beam dump experiments place strong constraints on the parameter space of interesting sub-GeV dark matter (DM) models. We extend the current literature, which mainly focuses on the predicted signals of scalar and fermionic DM at beam dump experiments, by considering simplified DM models where the Standard Model is extended by one vector DM candidate along with one spin-1 or spin-0 mediator. In...
Axionlike Particles (ALPs) can be produced in the Sun and is a viable candidate to the Cosmological Dark Matter. It can decay to two photons or interact with matter via Inverse Primakoff (IP) scattering. We identify inelastic channels to the IP-processes due to atomic excitation and ionization in additional to the elastic scattering. Their cross-sections are derived with full electromagnetic...
GeV-scale dark matter particles with strong coupling to baryons evade the standard direct detection limits as they are efficiently stopped in the overburden and, consequently, are not able to reach the underground detectors. On the other hand, novel direct detection bounds were found when the flux of dark matter particles boosted by interactions with cosmic rays was taken into account. We...
The NUCLEUS experiments aims to perform a high-precision measurement of the coherent elastic neutrino–nucleus scattering (CEvNS) at the EdF Chooz B nuclear power plant in France. CEvNS is a unique process to study neutrino properties and to search for new physics beyond the Standard Model. CEvNS could also represent an unshieldable background for high-sensitivity dark matter experiments....
Radon daughter decays continue to limit the sensitivity of 10 GeV — 10+ TeV direct dark matter searches, despite extensive screening programs, careful material selection and specialized radon-reduction systems. While these techniques form an essential basis for rare-event search experiments, we seek a fully-efficient event-level tag of radon daughter backgrounds. For detection instruments...
The best-motivated scenario for a sizable primordial black hole (PBH) contribution to the LIGO/Virgo binary black hole mergers invokes the QCD phase transition, which naturally enhances the probability to form PBH around the stellar mass scale. We reconsider the expected mass function associated not only to the QCD phase transition proper, but also the following particle antiparticle...
Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range 5 x10^14g - 5 x 10^15g, we point out that the neutrinos emitted by PBHs evaporation can interact through the coherent elastic neutrino nucleus scattering (CEvNS) producing an observable signal in multi-ton DM direct...
Several pieces of evidence point toward the existence of Dark Matter (DM). One detection strategy is the search for self-annihilation or decay into standard model particles. We present a novel technique to constrain the DM annihilation rate and the DM decay rate by employing Earth-based detectors such as XENON1T or Borexino. While the primary goal of these detectors is either direct detection...