Speaker
Description
The muon collider is the ideal machine for reaching multi-TeV centre-of-mass energy and high luminosity lepton collisions, thanks to the low beamstrahlung and synchrotron radiation loss compared to $e^+$ $e^-$ colliders.
In such conditions, the number of produced Higgs bosons will allow to measure its couplings to fermions and bosons with an unprecedented precision.
However, in order to evaluate its physics reaches, the detector performance must be determined, since they may be strongly affected by very high fluxes of particles coming from muons decaying in circulating beams. In this contribution latest results on jet reconstruction and jet flavour identification performance, evaluated via full simulation of the muon collider detector, are presented.
Most recent results on the precision on the measurement of the Higgs production cross sections are shown. The signal and the physics background samples are fully simulated and reconstructed at 3 TeV center of mass energy, evaluating the effects of the beam-induced background on the detector performance.
Type of talk | Future prospects |
---|