Metal surfaces have inevitable defects, such as dust particals, scratches, and protrusions caused by manufacture. Such defects will generate local electric field enhancement, occur vacuum breakdown, give rise to great damage to metal devices. The Compact Linear Collider (CLIC) in CERN, is one of the important examples where vacuum breakdown may affect the performance efficiency of the entire...
The application of superconducting radio frequency cavities on particle accelerators has brought the need of coating Cu with Nb thin films. Two techniques have been widely used in this field: conventional direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HiPIMS). Experimentally, the application of both techniques has led to different surface morphologies...
The surface electric field has been regarded as the only parameter that determines the occurrence of a vacuum breakdown (VBD) for a given surface condition. However, recent studies have accumulated an increasing amount of evidence indicating that the ultimate limit depends strongly also on the electromagnetic power that is available to be delivered at the VBD site. Here we study this...
One of the main directions of development of acceleration technology is to increase the acceler ation rate to 100 MV / m, as, for example, in projects Compact LInear Collider (CLIC), International Linear Collider (ILC), which will reduce the linear dimensions of modern electronic accelerators, make them more compact and achieve record acceleration energies of charged particle beams (of the...
Field emission is one of the main factors, which leads to the loss of electrical insulating properties of the interelectrode vacuum gap. Solving the problem of reducing the field emission current value in accelerating structures is necessary to obtain gradient-stable materials before the occurrence of dark currents and, as a consequence, the possibility of overcoming high-vacuum high-gradient...
In a world with a fast-growing and rapidly aging population, where availability and accuracy of diagnosis is key to early detection and treatment of disease and injury, the development of enhanced medical imaging techniques will improve the wellbeing of unwell members of society. The unique features of field emitters can be exploited to develop portable systems for 3D X-ray imaging, that will...
Vacuum arcs –also known as breakdown–, i.e. electric discharges appearing in vacuum, are a major limiting factor for various applications such as particle accelerators, fusion reactors, vacuum interrupters, X-ray sources, and space applications. However, the physical mechanisms underlying the very initiation of the phenomenon still remain unclear. Recent experimental evidence indicates that...
MITICA is an experiment located at Consorzio RFX which aims to create a prototype for ITER's Neutral Beam Injector (NBI). Since its design features an unprecedented potential difference (1 MV) there is an interest in researching means to prevent discharges in vacuum, which might prove fatal to the structure of the machine. In this context, High Voltage Padova Test Facility (HVPTF) is an...
Photoemission is a widely known physical phenomena that occurs when
an electron with sufficient energy strikes the surface of a material and releases an electron. Nanoplasmonics is the manipulation of absorption, scattering and near-field interactions using different materials, shapes and sizes in the nanometer domain.
Photoemission plays an important role in several branches of physics. Usually, the photocathodes are covered in layers of photoemissive material to increase the quantum efficiency. Using plasmonics, is it possible to fabricate pure metallic photocathodes that has an increase in the number of emitted electrons?
Conditioning of a metal surface in a high-voltage system is the progressive development of resistance to vacuum arcing over the operational life of the system.
This is relevant for accelerator cavities where high level of performance is only achievable after long conditioning period. Beyond the accelerator research field, this is an important topic for any technology where breakdowns can...
In this work Cu electrodes were characterized with AFM and SEM. The AFM topology map was used to create a field enhancement map of the surface. SEM images show different structures with multi-scale roughness. A hypothesis for CuO protrusion growth on the Cu electrodes is introduced.
Optical light spectra have been observed during field emission tests with Cu, CuCrZr, Nb and Ta electrode pairs in the CERN pulsed DC systems. Spectra for Cu and CuCrZr have been reliable and repeatable displaying an increase in light intensity proportional to the field-emitted current. The spectra obtained for Cu-based materials resemble the reflectance spectrum for Cu, which is likely the...
Beam loss occurs in H- RFQs, and has been observed for example in LINAC4 at CERN. To determine if such beam loss can induce breakdown, and to compare the robustness of different materials, tests have been done in pulsed high-voltage DC systems. Cathodes of different materials were irradiated with 1.2E19 H- p/cm2, the estimated beam loss of the LINAC4 RFQ. The irradiated electrodes were tested...