11–15 Mar 2024
Charles B. Wang Center, Stony Brook University
US/Eastern timezone

Acceleration of the ML based fast simulation in high energy physics

14 Mar 2024, 16:10
30m
Charles B. Wang Center, Stony Brook University

Charles B. Wang Center, Stony Brook University

100 Circle Rd, Stony Brook, NY 11794
Poster Track 1: Computing Technology for Physics Research Poster session with coffee break

Speaker

Sitian Qian (Peking University (CN))

Description

The diffusion model has demonstrated promising results in image generation, recently becoming mainstream and representing a notable advancement for many generative modeling tasks. Prior applications of the diffusion model for both fast event and detector simulation in high energy physics have shown exceptional performance, providing a viable solution to generate sufficient statistics within a constrained computational budget in preparation for the High Luminosity LHC. However, many of these applications suffer from slow generation with large sampling steps and face challenges in finding the optimal balance between sample quality and speed. The study focuses on the latest benchmark developments in efficient ODE/SDE-based samplers, schedulers, and fast convergence training techniques. We test on the public CaloChallenge and JetNet datasets with the designs implemented on the existing architecture, the performance of the generated classes surpass previous models, achieving significant speedup via various evaluation metrics.

Primary author

Cheng Jiang (The University of Edinburgh (GB))

Co-authors

Huilin Qu (CERN) Sitian Qian (Peking University (CN))

Presentation materials