Conveners
Sensors: Solid-state sensors for tracking: Early Wednesday
- Miguel ULLAN (CNM-Barcelona (ES))
- Javier Fernandez-Tejero (Simon Fraser University (CA))
Sensors: Solid-state sensors for tracking: Middle Wednesday
- Thomas Koffas (Carleton University (CA))
- John Stakely Keller (Carleton University (CA))
Sensors: Solid-state sensors for tracking: Late Thursday
- Hartmut Sadrozinski (University of California,Santa Cruz (US))
- Hartmut Sadrozinski (SCIPP, UC santa Cruz)
- Jens Weingarten (Technische Universitaet Dortmund (DE))
Description
Zoom Room: TIPP2021 Parallel Room 1
(see e-mail sent to registered participants for connection details)
The project 4DInSiDe has the ambitious goal to implement several technological breakthroughs in the fabrication of the Low Gain Avalanche Diode (LGAD). In this work the results of device-level simulations, carried out with the state-of-the-art Synopsys Sentaurus Technology CAD (TCAD) tool, of non-irradiated and irradiated LGAD will be presented. In order to have a predictive insight into the...
We report on the design, simulation and test of Low Gain Avalanche Diodes (LGADs) which utilize a buried gain layer. The buried layer is formed by patterned implantation of a 50-micron thick float zone substrate wafer-bonded to a low resistivity carrier. This is then followed by epitaxial deposition of a ~3 micron-thick high resistivity amplification region. The topside is then processed with...
We report on the layout and performance of Low-Gain Avalanche Detectors (LGAD) produced by HPK as prototypes for the HGTD in ATLAS. The HGTD is a multi-layer upgrade of the ATLAS detector of total area of 6.4m2 covering the pseudo-rapidity region between 2.4 and 4.0 with timing sensors with time resolution of 50 ps, representing the first large scale application of the LGAD.
Sensors with an...
Timepix3 detectors are hybrid pixel detectors (256 x 256 pixels, pixel-pitch: 55 µm) providing simultaneous ToT and ToA measurement in each pixel with negligible dead time (~475 ns). Ionizing particle interactions in the sensor are seen as tracks with a rich set of features which can be exploited for particle identification and trajectory reconstruction (even with single layer setups). The...
A large R&D program has been underway to develop silicon sensors with sufficient radiation tolerance for LHC-Phase-II trackers and the next generation of collision experiments. Key areas of recent RD50 research include new technologies such as CMOS and Low Gain Avalanche Detectors (LGADs), where a dedicated multiplication layer to create a high field region is built into the sensor. We also...
In this contribution, we present a new development of radiation-resistant silicon sensors produced by the Fondazione Bruno Kessler (FBK, Italy). The design of the sensors exploits the recently observed saturation of radiation damage effects on silicon, together with the usage of thin substrates, intrinsically less affected by radiation. To cope with the small-signal coming from thin sensors,...
MIMOSIS is a CMOS Pixel Sensor developed at IPHC, Goethe University Frankfurt and GSI for high granularity and large hit rate capability. These features meet the requirements of the Micro-Vertex Detector of the Compressed Baryonic Matter, a future experiments at FAIR: spatial resolution of ~5 µm, minimum radiation tolerance to 7×10^13neq/cm² and 5Mrad, operation in vacuum, and continuous...
As nuclear and particle physics facilities move to higher intensities, the detectors used there must be more radiation tolerant. Diamond is in use at many facilities due to its inherent radiation tolerance and ease of use. We will present radiation tolerance measurements of the highest quality poly-crystalline Chemical Vapor Deposition (pCVD) diamond material for irradiations from a range of...
Low Gain Avalanche Detectors (LGADs) are thin silicon detectors with moderate internal signal amplification. LGADs are capable of providing measurements of minimum-ionizing particles with time resolution as good as 17 pico-seconds. The first implementation of this technology will be with the high luminosity upgrade at the Large Hadron Collider (HL-LHC). Past publications have proven the vast...
Ultra Fast Silicon Detector (UFSD) is an innovative thin silicon sensor, based on Low Gain Avalanche Diode technology, able to measure the time of a hit with a temporal precision of ~30 ps. The application of this technology in HL-LHC experiments requires unaltered temporal performances at fluences of the order of 1E15 neq/cm2, making the radiation resistance a key point of this technology....
The CLIC Tracker Detector (CLICTD) is a monolithic pixel sensor featuring pixels of 30 um x 37.5 um and a small collection diode. The sensor is fabricated in a 180 nm CMOS imaging process, using two different pixel flavours: the first with a continuous n-type implant for full lateral depletion, and the second with a segmentation in the n-type implant for accelerated charge collection....
The inner detector of the ATLAS experiment will be replaced by a completely new Inner Tracker (ITk) to exploit the performance of the High Luminosity upgrade of the LHC accelerator (HL-LHC). The new detector will have to operate in an unprecedented radiation environment. In particular, the hybrid pixel detectors of the innermost layer of the ITk will be exposed to a particle fluence of about...
Resistive Silicon Detectors (RSD, also known as AC-LGAD) are novel n-in-p silicon sensors, based on the LGAD technology, featuring an unsegmented gain layer that spreads over the whole sensor active area.
The innovative feature of the RSD design is that the signal produced by an ionizing particle is seen on several pixels, allowing the use of Machine Learning techniques that exploit the...
Towards radiation tolerant sensors for pico-second timing, several dopants are explored. Using a common mask, CNM produced LGADs with Boron, Boron+Carbon and Gallium implanted gain layers are studied under neutron and proton irradiation. With fluences ranging from 1e14 to 6e15 $n_{eq}/cm^{2}$ on both species, reported results focus on breakdown voltage-mode, acceptor removal and gain reduction...
Focus of this RD50 project is the investigation of trap energy levels introduced by radiation damage in epitaxial p-type silicon. Using 6-inch wafers of various boron doping concentrations (1e13, 1e14, 1e15, 1e16, and 1e17 cm-3) with a 50 µm epitaxial layer, multiple iterations of test structures consisting of Schottky and pn-junction diodes of different sizes and flavours are being fabricated...