This contribution presents results on the Analytical Method (AM) algorithm for trigger primitive (TP) generation in the CMS Drift Tube (DT) chambers during the High Luminosity LHC operation (HL-LHC or LHC Phase 2). The algorithm has been developed and validated both in software with an emulation approach, and through hardware implementation tests. The obtained performance on Phase 2 simulated...
The upcoming High-Luminosity LHC (HL-LHC) upgrade of the ATLAS Tile Hadronic Calorimeter (TileCal) includes a complete replacement of all on- and off-detector electronics with a new read-out architecture. Detector signal digitized by the on-detector electronics will be transferred to Pre-processors (PPr) located off-detector that will interface with the ATLAS trigger and data acquisition...
Within the last years, RD51 collaboration’s general readout system, the Scalable Readout System (SRS), has been updated by integrating a recent front-end ASIC: The VMM, originally designed for the ATLAS New Small Wheel. Applying the SRS design strategy, a new front-end board and adapter card, as well as FPGA firmware and software was developed, while keeping general SRS hardware. With...
Liquid argon (LAr) sampling calorimeters are employed by ATLAS for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, and for hadronic and forward calorimetry in the region from |η| = 1.5 to |η| = 4.9. After detector consolidation during a long shutdown, Run-2 started in 2015 and about 150fb-1 of data at a center-of-mass energy of 13 TeV was recorded. Phase-I detector...
To maximize the physics reach, the LHC plans to increase its instantaneous luminosity to $7.5\times 10^{34}$ cm$^{-2}$ s$^{-1}$, delivering from 3 to 4 ab$^{-1}$ of data at $\sqrt{s}=$14 TeV. In order to cope with this operation condition, the ATLAS detector will require new sets of both front-end and back-end electronics. A new trigger and DAQ system will also be implemented with a...
A highly granular silicon-tungsten electromagnetic calorimeter (SiW-ECAL) is the reference design for the ECAL of the ILD concept, one concept for detectors at the future International Linear Collider. Prototypes for a SiW ECAL are developed within the CALICE Collaboration.
A highly compact digital readout card (SL-Board), is now available. The SL-Board combines data acquisition, power...
We explore the possibility of mitigating the effects of out-of-time pileup by developing an alternative scheme for signal amplitude reconstruction that is done online for the CMS Hadron Calorimeter (HCAL). This new scheme makes use of information from bunch crossings preceding the one that would generate an accept decision for the Level-1 Trigger (L1T). The scheme employs basic pulse shape...
The LHC will be upgraded in several phases that will allow significant expansion of its physics program. The luminosity of the accelerator is expected to exceed 5×1034cm−2s−1. In order to sustain the harsher conditions and to help maintain good trigger efficiency and performance the Resistive Plate Chambers (RPC) system of the CMS experiment, its Link System will be upgraded. The present RPC...
The ATLAS experiment will undergo a major upgrade to adapt to the HL-LHC. The Trigger and Data Acquisition system (TDAQ) will record data at unprecedented rates: detectors will be read out at 1 MHz generating around 5 TB/s of data. Within TDAQ the Dataflow system (DF) introduces a novel design: readout data are buffered on persistent storage while the event filtering system selects 10 kHz of...
Time Projection Chamber (TPC) is a gaseous detector used for tracking charged particles. These detectors comprise of sensitive gas volumes applied with high electric field between the endplates. When a charged particle traverses the TPC volume, it ionizes the gas atoms along its trajectory. The free electrons produced move towards anode with a speed depending on the gas mixture and the applied...
The SOI (Silicon-On-Insulator) pixel detector is the monolithic imaging device developed by the SOIPIX group led by KEK. This detector is being tested for practical use such as X-ray imaging, but the readout FPGA (Field-Programmable Gate Array) board SEABAS2 (Soi EvAluation BoArd with Sitcp 2), which is mainly used for the readout of this detector is becoming obsolete. This has led to problems...
The Level-1 trigger system for the Bellell experiment is designed to select various physics targets under high background environment at the SuperKEKB, energy-asymmetric electron-positron collider. We have developed the FPGA based system to provide the trigger within 4.5μs with the central drift chamber, electromagnetic calorimeter, time-of-propagation detector, muon detectors and their...
The CMS electromagnetic calorimeter (ECAL) is a high resolution crystal calorimeter operating at the CERN LHC. It is read out at 40 MHz (the proton-proton collision rate) in order to provide information to the hardware-level (Level-1) trigger system, which decides whether the full CMS detector must be read out for each collision. The ECAL trigger performance achieved during LHC Run 2...
The present ATLAS small wheel muon detector is being replaced with a New Small Wheel (NSW) detector. One crucial part is the installation, testing and validation of the on-detector electronics & readout chain for a very large system with a more than 2.1 M electronic channels. These include ~4K MM Front-End Boards (MMFE8), custom printed circuit boards each one housing eight 64-channel VMM...
After the current LHC shutdown (2019-2022) the ATLAS experiment will operate in an increasingly harsh collision environment, motivating a series of upgrades. In order to improve the capacity and flexibility of the detector readout system, the Front-End Link eXchange (FELIX) system has been developed. FELIX acts as the interface between the data acquisition; detector control and TTC (Timing,...
The Compressed Baryonic Matter (CBM) experiment at FAIR needs a detector to measure the nucleus-nucleus collision centrality and orientation of the reaction plane. This will be obtained with the Projectile Spectator Detector (PSD), which is a sampling lead/scintillator forward hadron calorimeter.
The PSD readout system is based on ADC FPGA board (14-bit resolution and 125MHz digitization)...
In view of the HL-LHC, the Phase-2 CMS upgrade will replace the trigger and data acquisition system. The detector readout electronics will be upgraded to allow a maximum L1 rate of 750 kHz and 12.5 µs latency. The upgraded system will be entirely running on FPGAs and should greatly extend the capabilities of the current system to maintain trigger thresholds despite the harsh environment. The...
Within the Phase-II upgrade of the LHC, the readout electronics of the ATLAS LAr Calorimeters is prepared for high luminosity operation expecting a pile-up of up to 200 simultaneous pp interactions. Moreover, the calorimeter signals of up to 25 subsequent collisions are overlapping, which increases the difficulty of energy reconstruction. Real-time processing of digitized pulses sampled at 40...
The ATLAS ITk Upgrade project, culminating in the installation into the experiment in 2026, enters this year its production period. Cooperating laboratories dealing with the strip part of the project needs to meet various conditions in clean rooms and testing environments to ensure safety for production components during assembly and measurement procedures. Prague strip ITk laboratory prepared...
The CBM experiment at the FAIR accelerator complex is aimed at studying hot compressed baryonic matter. A mini CBM (mCBM) facility was developed at the SIS18 accelerator at GSI, Darmstadt, Germany to test prototypes of detector subsystems for the CBM experiment, front-end and readout electronics at high intensities of the heavy ion beam. The mCBM project includes a prototype of the forward...
INO ICAL Experiment emphasis on studying various properties of Atmospheric Neutrinos. A 50 kton Iron Calorimeter and Resistive plate Chamber (RPC) in stacked geometry will be used to track neutrinos. Position and directional information are to be used to identify particle energies. RPC detector signal of rise time less than 1ns is amplified-discriminated and given to Digital Front End...
A PMT base with integrated waveform recording has been designed for next-generation multi-PMT modules in the IceCube Neutrino Observatory at the South Pole. The base has a single ribbon cable connection for low voltage power supply, timing synchronization and communication signals. A Cockcroft-Walton multiplier provides high voltage for a 10-stage PMT, following the design of current IceCube...
The Thin Gap Chambers (TGCs) of the LHC-ATLAS are responsible for triggering muons in the endcap region at the hardware trigger stage. The frontend system of TGC will be upgraded for HL-LHC to send binary hit-map at every bunch crossing (BC) to the backend system. Such an operation requires lots of unique challenges: high-performance hit BC Identification, fine-tuned clock distribution,...
During Run-2 the Large Hadron Collider has provided, at the World's energy frontier, proton-proton collisions to the ATLAS experiment with instantaneous luminosity of up to 2.1x10^34 cm-2s-1, placing stringent operational requirements on the ATLAS trigger system in order to reduce the 40MHz collision rate to a manageable event storage rate of 1kHz.
The ATLAS Level-1 trigger is the first...
The silicon pixel detector is the core component of the vertex detector in the CEPC experiment. The Jadepix3 is one of the chips designed to study the performance and design of pixel sensor chips. The chip is a design of the full-function large-size chip based on CMOS technology. To test all the functions and the performance of this chip, we designed a test system based on the IPbus framework...
The Level-1 trigger system of the Belle II experiment is designed to select physics events of interest with almost 100% efficiency. In terms of event timing decision, the level-1 trigger is required to have an accuracy of less than 10 ns. The Central Drift Chamber (CDC) level-1 trigger provides the event timing information as one of the level-1 timing sources. We developed the new algorithm to...
The High-Luminosity phase of LHC, delivering five times the LHC nominal instantaneous luminosity, is scheduled to begin in late 2027. The ATLAS Tile Hadronic Calorimeter (TileCal) will need new electronics to meet the requirements of a 1 MHz trigger, higher radiation dose, and to ensure sound performance under high pile-up conditions. Both the on- and off-detector TileCal electronics will be...
The ATLAS experiment will get a new inner tracker (ITk) during the phase II upgrade. The innermost part is called the Pixel Detector. A new Detector Control System (DCS) is being developed to provide control and monitoring of the ITk pixel detector.
The Monitoring of Pixel System (MOPS) chip is an Application Specific Integrated Circuit (ASIC) foreseen in the DCS to independently monitor the...
The future High Luminosity era of the Large Hadron Collider, with its unprecedented instantaneous luminosity, will impose new challenges on the LHC experiments. ATLAS will replace its inner detector with a new all-silicon Inner Tracker (ITk), whose innermost layers will be based on pixel technology and are expected to produce a data output of about 11 Tb/s. A high-speed transmission chain...
The Phase II upgrade of the CMS detector for the High Luminosity upgrade of the LHC (HL-LHC) includes the introduction of tracking at the Level-1 (L1) trigger, thus offering the possibility of developing a simplified Particle Flow (PF) algorithm. We present the logic of the algorithm, along with its inputs and its firmware implementation. We show that this implementation is capable of...
The Pierre Auger Observatory's array of surface detectors is being upgraded by adding new detectors and replacing electronics.
The upgrade project, called "AugerPrime," includes the addition of a small PMT to increase the dynamic range for particle counting, a plastic scintillator above each WCD to improve the discrimination between the electromagnetic and muonic shower components, a radio...
Status of the development of the Level-0 endcap muon trigger system for the ATLAS experiment at the HL-LHC is presented. The upgraded system reconstructs muon candidates with an improved pT resolution by combining data from various sub-detectors. This is realized by exploiting evolution of data transmission technologies, to send all hit data from Thin Gap Chambers (TGCs) and other...
LHC is expected to increase its instantaneous luminosity to 2x10^34 cm^-2s^-1 in Run3. In order to cope with the high luminosity, upgrade of the trigger system is ongoing. The level-1 Endcap Muon trigger system reconstructs muons with high transverse momentum by combining data from Thin Gap Chambers (TGCs) and inner station detectors. In the upgrade, a new detector called New Small Wheel (NSW)...