Conveners
[OC/GW] Observational cosmology and gravitational waves
- Vincenzo Fabrizio Cardone
[OC/GW] Observational cosmology and gravitational waves
- Vincenzo Fabrizio Cardone
I will present two new high-precision measurements of the deuterium abundance from absorbers along the line of sight to the quasar PKS1937–1009. The absorbers have lower column densities (N(HI)$ \approx 18\mathrm{cm}^{-2}$) than for previous high-precision measurements, boding well for further extensions of the sample due to the plenitude of low column density absorbers. The total...
We create a model independent mock dataset to test the viability and possible properties of the cosmological redshift drift, also known as Sandage-Loeb test. The redshift of a given object will exhibit a specific variation through time due to the expansion of the universe. This mechanism was predicted by Sandage in 1962, but with the technology of that epoch it was impossible to detected the...
The talk will focus on different observation strategies that might be used for wide field telescope surveys in order to find electromagnetic (EM) counterpart to gravitational wave (GW) event, and possible implication of finding such counterpart. Information carried by GW and EM bands are complementary. GW brings information about acceleration of the mass in the source when EM carries the...
Main foundations of the standard Lambda-CDM model of Cosmology are:
1) The redshifts of the galaxies are due to the expansion of the Universe plus the peculiar motions;
2) The cosmic microwave background radiation and its anisotropies come from the high energy primordial Universe when matter and radiation become decoupled;
3) The abundance pattern of the light elements is to be explained in...
The all presentation is an updated version of my paper printed in Annalen der Physik (Leipzig , 11 (2002) 441-455. (ArXiv: gr-qc.0102072). In this paper I have considered exact, non-linear gravitational waves in the framework of general relativity and showed that they transfer energy-momentum and angular momentum.
An exact, plane wave solution of the gravitational field equations is investigated. The source stress tensor is represented by an anisotropic null fluid with energy flux to which the energy density $\rho$ and the pressure $p_{z}$ are negative but finite throughout the spacetime. They depend on a constant length (taken of the order of the Planck length) and acquire Planck values close to the...