Speaker
Description
Over the past decades nuclear physics experiment has seen a drastic increase in complexity. With the arrival of second generation radioactive ions beams facilities all over the world, the run for exploring more and more exotic nuclei is raging. The low intensity of RI-beams require more complex setup, covering larger solid angle, and detecting a wider variety of charged and neutral particles. Design, construction and operation of the variety of complex instruments used in such experiments require more and more software development. The short lifetime of experimental setup and the endless recombination of instruments demands a strong methodology. As the community is shifting to this new paradigm, the quest for the optimum framework is becoming central in the field. In this outlook I will introduce the specificity of the nuclear physics community, technical needs of such framework, and give an overview of the existing one, with an emphasize on the difficult balance between computing performances, versatility and integration with other framework.